Spelling suggestions: "subject:"cosmic voies"" "subject:"cosmic poids""
1 |
Galaxy clusters and cosmic voids in modified gravity scenariosCastello, Sveva January 2019 (has links)
The so-called 'cosmic web', comprising cosmic voids and galaxy clusters, has been proven to be extremely sensitive to deviations from General Relativity. This could be further investigated by future large-scale surveys, such as with the European Space Agency satellite Euclid. In this study, the parameter |fR0| from f(R) gravity is constrained by considering the Euclid survey specications to predict the observed numbers of voids and clusters in bins of redshift, mass and, only for voids, density contrast. From these values, the Fisher matrix is computed for three values of |fR0|, 10-4, 10-6 and 10-8, by assuming a flat Universe with a component that mimics the cosmological constant. The probability density functions are obtained for |fR0| and seven other parameters from the fiducial model considered (ns, h, Ωb, Ωm, σ8, w0 and wa).
|
2 |
Cosmologie et gravité des régions sphériques compensées / Cosmology and gravity of spherically compensated cosmic regionsFromont, Paul de 23 June 2017 (has links)
Cette thèse de cosmologie est consacrée à l'étude de l'empreinte de l'énergie noire sur la formation des structures de l'Univers. Je défini et introduit les régions cosmiques compensées comme l'environnement à grande échelle autour des extrema locaux dans le champ de densité. Dans le cas d'un minimum central, cette région peut être identifiée aux vides cosmiques usuels. A l'aide de simulations numériques, je montre que ces régions présentent des propriétés de formes particulières et qu'elles dépendent de la cosmologie. Je montre que la forme moyenne de ces profils de densité ainsi que leur propriétés statistiques peuvent être calculée analytiquement dans l'Univers primordial. En utilisant une dynamique appropriée, je montre qu'il est possible de suivre précisément l'évolution non linéaire de ces structures. Il devient alors possible de reconstruire les profils de matières observés aujourd'hui à partir les profils théoriques primordiaux évolués selon une dynamique appropriée. J’exhibe une propriété fondamentale de ces régions qui maintient constant une taille particulière, le rayon de compensation. Autour de ce point, l'évolution non linéaire du champ de matière peut être suivie analytiquement. En étudiant l'effondrement gravitationnel dans des théories étendues de gravité, je montre qu'il est possible de contraindre efficacement la nature de la gravité et de la cosmologie à partir de l'étude de certaines propriétés spécifiques à ces régions. Ce travail permet à la fois de donner une origine aux profils de matière sur les très grandes échelles cosmiques mais aussi de définir de nouvelles sondes cosmologiques pour tester la nature de notre Univers. / This thesis is devoted to the study of the imprints of dark energy on the formation of the large scale structures in the Universe. I define the spherically compensated cosmic regions as the large-scale environment around local extrema in the density field. For central minimum, this region can be identified with standard cosmic voids. Using numerical simulations, I show that these regions, once properly identified, can be used efficiently to distinguish competitive cosmological models. I show that the average shape of these density profiles and their statistical properties can be analytically computed in the primordial Universe. Using an appropriate dynamical formalism, I show that it is possible to follow the nonlinear evolution of these structures until today. This allows to reconstruct the shape of such large scale regions from first principles. I exhibit a fundamental property of these regions which maintains constant a particular size : the compensation radius. Around this radius, the nonlinear evolution of the matter field can be analytically derived. By studying the gravitational collapse in gravity models beyond General Relativity, I show that it is possible to constrain efficiently both cosmology and the nature of gravity. Beside giving a physically motivated model for both shape and statistical properties of such large scale matter profile, this work also define new cosmological probes that could be used to test the nature of our Universe.
|
3 |
Cosmology with cosmic voids / La cosmologie avec les vides cosmiquesPisani, Alice 22 September 2014 (has links)
Les missions modernes permettent d’accéder à des mesures de qualité pour les grandes structures, en échantillonnant la distribution de galaxies en détail jusque dans les régions les moins denses, les vides. Toutefois, nous observons les vides dans l’espace des redshift, ce qui limite notre connaissance de ces structures. Afin d’utiliser les vides en tant qu’outils cosmologiques de précision, il est fondamental d’obtenir leur forme dans l’espace réel. Dans cette thèse nous présentons un algorithme non-paramétrique permettant de reconstruire les profils de densité sphérique des vides empilés dans l’espace réel, sans assomption pour les distorsions en redshift. Nous obtenons donc les premiers profils de densité des vides empilés dans l’espace réel, à travers lesquels nous étudions la compensation de masse et calculons les profils de vitesses particulières des vides, se basant sur la théorie linéaire et le modèle cosmologique. Nous discutons l’utilisation des profils pour contraindre indépendamment les vitesses. Avec des catalogues simulés de galaxies, nous analysons l’effet des vitesses particulières sur les propriétés physiques des vides. Enfin nous calculons une prédiction du nombre de vides que fournira la future mission Euclid et des contraintes que ce nombre de vides donnera sur les paramètres cosmologiques (grâce au formalisme de Fisher). Les profils de densité de vides dans l’espace réel peuvent être utilisés pour tester les modèles cosmologiques (à travers l’étude de l’effet des vitesses particulières et l’amélioration du test de Alcock-Paczynski); l’étude des vides promet donc d’apporter des informations indépendantes pour éclaircir le mystère de l’énergie obscure. / Modern surveys allow us to access to high quality measurements, by sampling the galaxy distribution in detail also in the emptier regions, voids. When we observe cosmic voids, however, we observe them in redshift-space: their real shape remains inaccessible to us, thus limiting our knowledge about such structures. To employ voids as a precision tool for Cosmology, it is fundamental to obtain their real-space shape. This thesis presents a model-independent non-parametric algorithm to reconstruct the spherical density profiles of stacked voids in real space, without assumptions about redshift distortions. With this algorithm, we obtain the first ever real-space density profiles of stacked voids. With the profiles we study the mass compensation and obtain a theoretical prediction for the velocity profiles of voids based on linear theory and assuming cosmological parameters. In parallel, we discuss the use of the real-space profiles to obtain model-independent information about the peculiar velocity profiles of voids. Also, using mock catalogues, we analyse the effect of peculiar velocities on void properties and discuss it in the framework of current and future surveys. Finally we calculate a forecast for void abundances with the future Euclid mission and obtain, using the Fisher matrix formalism, a prediction for the constraints that void abundances will set on cosmological parameters. The real-space profiles of voids can be used to test cosmological models (through the understanding of peculiar velocities effects and the improvement of the Alcock-Paczynski test); and void abundances promise to bring independent information and to shed light on the mystery of dark energy.
|
4 |
The Largest Void and Cluster in Non-Standard CosmologyCastello, Sveva January 2020 (has links)
We employ observational data about the largest cosmic void and most massive galaxy cluster known to date, the 'Cold Spot' void and the 'El Gordo' cluster, in order to constrain the parameter |fR0| from the f(R) gravity formulation by Hu and Sawicki and the matter power spectrum normalization at present time, σ8. We obtain the marginalized posterior distribution for these two parameters through a Markov Chain Monte Carlo analysis, where the likelihood function is modeled through extreme value statistics. The prior distribution for the additional cosmological parameters included in the computations (Ωdmh2, Ωbh2, h and ns) is matched to recent constraints. By combining the likelihood functions for both voids and clusters, we obtain a mean value log|fR0| = -5.1 ± 1.6, which is compatible with General Relativity (log|fR0| ≤-8) at 95% confidence level, but suggests a preference for a non-negligible modified gravity correction.
|
Page generated in 0.0368 seconds