• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 3
  • Tagged with
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Control of Nitrogen Removal in Activated Sludge Processes

Samuelsson, Pär January 2005 (has links)
More stringent requirements on nitrogen removal from wastewater are the motivation for this thesis. In order to improve treatment results and enhance cost-efficient operation of wastewater treatment plants, model based control strategies are presented. A Java based simulator for activated sludge processes (JASS) is presented. The graphical user interface, educational experiences and implemented control strategies are discussed. Controlling the addition of an external carbon source is the next topic discussed. A simple model based feedforward controller is derived and evaluated in a simulation study. The controller attenuates process disturbances quickly. Further, two feedforward controllers for adjusting the aeration volume in activated sludge processes are derived. The aim of the volume control strategies was to efficiently dampen the impact of process disturbances without using an excessively high dissolved oxygen concentration. The simulation results are promising and show that the aeration volume may be a feasible control variable. A linearisation method for static input non-linearities is presented. The method gives essentially the same result as the existing standard method, but possesses some implementational advantages. The method is used to linearise the non-linear oxygen transfer function of an activated sludge process in an application study. Multivariable interactions in a process model describing nitrate removal in an activated sludge process are studied using the well known RGA method as well as a relatively novel tool based on Hankel norms. The results of the analysis are compared to conclusions drawn from common process knowledge and are used to design a multivariable control strategy. It was found that process disturbances may be rejected faster using multivariable control. Finally, the operational costs of the denitrification process are investigated and visualised graphically. Cost optimal regions are found by a numerical grid search. Procedures for controlling the denitrification process in a cost-efficient way are described.
2

Control of Nitrogen Removal in Activated Sludge Processes

Samuelsson, Pär January 2005 (has links)
<p>More stringent requirements on nitrogen removal from wastewater are the motivation for this thesis. In order to improve treatment results and enhance cost-efficient operation of wastewater treatment plants, model based control strategies are presented.</p><p>A Java based simulator for activated sludge processes (JASS) is presented. The graphical user interface, educational experiences and implemented control strategies are discussed.</p><p>Controlling the addition of an external carbon source is the next topic discussed. A simple model based feedforward controller is derived and evaluated in a simulation study. The controller attenuates process disturbances quickly. Further, two feedforward controllers for adjusting the aeration volume in activated sludge processes are derived. The aim of the volume control strategies was to efficiently dampen the impact of process disturbances without using an excessively high dissolved oxygen concentration. The simulation results are promising and show that the aeration volume may be a feasible control variable.</p><p>A linearisation method for static input non-linearities is presented. The method gives essentially the same result as the existing standard method, but possesses some implementational advantages. The method is used to linearise the non-linear oxygen transfer function of an activated sludge process in an application study.</p><p>Multivariable interactions in a process model describing nitrate removal in an activated sludge process are studied using the well known RGA method as well as a relatively novel tool based on Hankel norms. The results of the analysis are compared to conclusions drawn from common process knowledge and are used to design a multivariable control strategy. It was found that process disturbances may be rejected faster using multivariable control.</p><p>Finally, the operational costs of the denitrification process are investigated and visualised graphically. Cost optimal regions are found by a numerical grid search. Procedures for controlling the denitrification process in a cost-efficient way are described.</p>
3

Interaction Analysis in Multivariable Control Systems : Applications to Bioreactors for Nitrogen Removal

Halvarsson, Björn January 2010 (has links)
Many control systems of practical importance are multivariable. In such systems, each manipulated variable (input signal) may affect several controlled variables (output signals) causing interaction between the input/output loops. For this reason, control of multivariable systems is typically much more difficult compared to the single-input single-output case. It is therefore of great importance to quantify the degree of interaction so that proper input/output pairings that minimize the impact of the interaction can be formed. For this, dedicated interaction measures can be used. The first part of this thesis treats interaction measures. The commonly used Relative Gain Array (RGA) is compared with the Gramian-based interaction measures the Hankel Interaction Index Array (HIIA) and the Participation Matrix (PM) which consider controllability and observability to quantify the impact each input signal has on each output signal. A similar measure based on the <img src="http://www.diva-portal.org/cgi-bin/mimetex.cgi?%5Cmathcal%20H_2" /> norm is also investigated. Further, bounds on the uncertainty of the HIIA and the PM in case of uncertain models are derived. It is also shown how the link between the PM and the Nyquist diagram can be utilized to numerically calculate such bounds. Input/output pairing strategies based on linear quadratic Gaussian (LQG) control are also suggested. The key idea is to design single-input single-output LQG controllers for each input/output pair and thereafter form closed-loop multivariable systems for each control configuration of interest. The performances of these are compared in terms of output variance. In the second part of the thesis, the activated sludge process, commonly found in the biological wastewater treatment step for nitrogen removal, is considered. Multivariable interactions present in this type of bioreactor are analysed with the tools discussed in the first part of the thesis. Furthermore, cost-efficient operation of the activated sludge process is investigated.

Page generated in 0.3909 seconds