• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • 1
  • Tagged with
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Elucidating the solid, liquid and gaseous products from batch pyrolysis of cotton-gin trash.

Aquino, Froilan Ludana 15 May 2009 (has links)
Cotton-gin trash (CGT) was pyrolyzed at different temperatures and reaction times using an externally-heated batch reactor. The average yields of output products (solid/char, liquid/bio-oil, and gaseous) were determined. The heating value (HV) of CGT was measured to be around 15-16 MJ kg- 1 (6500-7000 Btu lb-1). In the first set of tests, CGT was pyrolyzed at 600, 700, and 800°C and at 30, 45, and 60 min reaction period. The maximum char yield of 40% by weight (wt.%) was determined at 600°C and 30 min settings, however, the HV of char was low and almost similar to the HV of CGT. A maximum gas yield of 40 wt.% was measured at 800°C and 60 min and the highest liquid yield of 30 wt.% was determined at 800°C and 30 min. In the modified pyrolysis test, the effects of temperature (500, 600, 700, and 800°C) on the product yield and other properties were investigated. The experiment was performed using the same reactor purged with nitrogen at a rate of 1000 cm3 min-1. Gas yield increased as temperature was increased while the effect was opposite on char yield. The maximum char yield of 38 wt.% was determined at 500°C and 30 min. The char had the largest fraction in the energy output (70-83%) followed by gas (10-20%) and bio-oil (7- 9%). Maximum gas yield of 35 wt.% was determined at 800°C. The average yield of CO, H2 and total hydrocarbons (THC) generally increased with increased temperature but CO2 production decreased. Methane, ethane, and propane dominated the THC. The bio-oil yield at 600°C was the highest at about 30 wt.% among the temperature settings. The HV of bio-oil was low (2-5 MJ kg-1) due to minimal non-HC compounds and high moisture content (MC). A simple energy balance of the process was performed. The process was considered energy intensive due to the high amount of energy input (6100 kJ) while generating a maximum energy output of only 10%. After disregarding the energy used for preparation and pyrolysis, the energy losses ranged from 30-46% while the energy of the output represent between 55-70% of the input energy from CGT.
2

Cyclone Performance for Reducing Biochar Concentrations in Syngas

Saucier, David Shane 16 December 2013 (has links)
Cotton gins have a readily available supply of biomass that is a by-product of cotton ginning. A 40 bph - cotton gin processing stripped cotton must manage 2,600 to 20,000 tonnes of cotton gin trash (CGT) annually. CGT contains approximately 16.3 MJ/kg (7000 Btu/lb.). CGT has the potential to serve as a renewable energy source. Gasification of biomasses such as CGT can offer processing facilities the opportunity to transform their waste biomass into electricity. The gasification of CGT yields 80% synthesis gas (syngas) and 20% biochar. The concentration of biochar in the syngas needs to be reduced prior to the direct fueling of an internal combustion engine driving a generator for electricity production. It was estimated that direct fueling of an internal combustion engine with syngas to drive the generator to produce electricity would cost $1M per megawatt (MW). In contrast, a 1MW system that consists of a boiler and steam turbine would cost $2M/MW. The current provisional patent for the TAMU fluidized bed gasification (FBG) unit uses a 1D2D and 1D3D cyclone for the removal of biochar. A cyclone test stand was designed and constructed to evaluate cyclone capture efficiencies of biochar. A statistical experiment design was used to evaluate cyclone performances for varying concentrations of biochar. A total of 24 tests for the 1D2D and 36 tests for the 1D3D cyclone were conducted at ambient conditions. Average collection efficiency for the 1D2D cyclone was 96.6% and 96.9% for the 1D3D cyclone. An analysis on the cyclone’s pressure drop was performed to compare the change in pressure drop from air only passing through the cyclone and when the cyclones are loaded with biochar. The average change in pressure drop for the 1D2D cyclone was a decrease of 74%, and the average change in pressure drop for the 1D3D cyclone was a decrease of 36%. An economic feasibility study was conducted to determine the price per kWh to produce electricity for a CGT fueled internal combustion engine power plant (ICPP) and a boiler and steam turbine power plant (SPP). The simulated cotton gin is a 40 bph rated facility operating for 2,000 hours a season (200% utilization) processing stripped cotton that yields approximately 180 kg/bale (400 lbs/bale) of CGT. Revenues consist of the electricity and natural gas expenses incurred during the ginning season, along with the extra electricity produced and sold back to the utility company at the whole price. Loan payments and operating costs include labor, maintenance, taxes, and insurance. Labor costs, the selling price of electricity and biochar are varied in the economic model. The ICPP has a NPV of $1,480,000, and the SPP has a NPV of -$160,000, under the base assumptions. The sensitivity analysis resulted in the selling price of electricity as having the largest change on the NPV for both of the power plants. The average predicted purchase price of electricity is $0.10/kWh for the twenty year simulation. The average price to produce electricity, with no source of revenue generation for the ICPP is $0.20/kWh and $0.26/kWh for the SPP.

Page generated in 0.2106 seconds