• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Characterisation of countably infinitely categorical theories

Karlsson, Edward January 2023 (has links)
This thesis looks at characterising countably infinitely categorical theories. That is theories for which every countably infinite model is isomorphic to every other countably infinite model. The thesis looks at the Lindenbaum-Tarski algebra, Henkin theories, types and then ends with the Ryll-Nardzewski theorem which provides several equivalences to a theory being countably infinitely categorical.
2

Constraint satisfaction with infinite domains

Bodirsky, Manuel 06 July 2004 (has links)
Constraint Satisfaction Probleme tauchen in vielen Gebieten der theoretischen Informatik auf. Häufig lassen sie sich auf natürliche Weise als Homomorphieprobleme für eine festgelassene Struktur Gamma formulieren: Die Berechnungsaufgabe besteht dann darin, für eine gegebene Struktur S mit der gleichen relationalen Signatur wie Gamma festzustellen, ob es einen Homomorphismus von S nach Gamma gibt. Dieses Problem wurde für enliche Strukturen Gamma intensiv untersucht. Viele der Constraint Satisfaction Probleme, die in der Literatur betrachtet werden, lassen sich jedoch nicht mit endlichen Schablonen Gamma formulieren. Diese Arbeit verallgemeinert Techniken zur Untersuchung der Berechnungskomplexität von Constraint Satisfaction Problemen mit endlichen Schablonen auf unendliche Schablonen. Insbesondere betrachten wir abzählbar kategorische Schablonen, die von zentraler Bedeutung in Modelltheorie sind. / Constraint satisfaction problems occur in many areas of computer science. Often they have a natural formulation as a homomorphism problem for a fixed relational structure Gamma: Given a structure S with the same relational signature as Gamma, is there a homomorphism from S to Gamma? This problem is known as the constraint satisfaction problem CSP(Gamma) for the template Gamma and is intensively studied for relational structures Gamma with a finite domain. However, many constraint satisfaction problems in the literature can not be formulated with a finite template. This thesis generalizes techniques to determine the complexity of constraint satisfaction with finite templates to constraint satisfaction with templates over an infinite domain. In particular, we study templates that are countably categorical. Such structures are a central and well-studied concept in model-theory.

Page generated in 0.371 seconds