• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Quantitative Laser-Based Diagnostics and Modelling of Syngas-Air Counterflow Diffusion Flames

Sahu, Amrit Bikram January 2015 (has links) (PDF)
Syngas, a gaseous mixture of H2, CO and diluents such as N2, CO2, is a clean fuel generated via gasification of coal or biomass. Syngas produced via gasification typically has low calorific values due to very high dilution levels (~60% by volume). It has been recognized as an attractive energy source for stationary power generation applications. The present work focuses on experimental and numerical investigation of syngas-air counterflow diffusion flames with varying composition of syngas. Laser-based diagnostic techniques such as Particle Imaging Velocimetry, Rayleigh thermometry and Laser-induced fluorescence have been used to obtain non-intrusive measurements of local extinction strain rates, temperature, quantitative OH and NO concentrations, respectively, for three different compositions of syngas. Complementing the experiments, numerical simulations of the counterflow diffusion flame have been performed to assess the performance of five H2/CO chemical kinetic mechanisms from the literature. The first part of the work involved determination of local extinction strain rates for six H2 /CO mixtures, with H2:CO ratio varying from 1:4 to 1:1. The extinction strain rates were observed to increase from 600 sec-1 to 2400 sec-1 with increasing H2:CO ratio owing to higher diffusivity and reactivity of the H2 molecule. Numerical simulations showed few mechanisms predicting extinction conditions within 5% of the measurements for low H2:CO ratios, however, deviations of 25% were observed for higher H2 :CO ratios. Sensitivity analyses revealed that the chain branching reactions, H+O2 <=>O+OH, O+H2 <=>H+OH and the third body reaction H+O2 +M<=>HO2 +M are the key reactions affecting extinction limits for higher H2:CO mixtures. The second phase of work involved quantitative measurement of OH species concentration in the syngas-air diffusion flames at strain rates varying from 35 sec-1 to 1180 sec-1. Non-intrusive temperature measurements using Rayleigh thermometry were made in order to provide the temperature profile necessary for full quantification of the species concentrations. The [OH] is observed to show a non-monotonous trend with increasing strain rates which is attributed to the competition between the effect of increased concentrations of H2 and O2 in the reaction zone and declining flame temperatures on the overall reaction rate. Although the kinetic mechanisms successfully captured this trend, significant deviations were observed in predictions and measurements in flames with H2:CO ratios of 1:1 and 4:1, at strain rates greater than 800 sec-1 . The key reactions affecting [OH] under these conditions were found to be the same reactions identified earlier during extinction studies, thus implying a need for the refinement of their reaction-rate parameters. Significant disagreements were observed in the predictions made using the chemical kinetic mechanisms from the literature in flames with high H2 content and high strain rate. The final phase of work focused on measurement of nitric oxide (NO) species concentrations followed by a comparison with predictions using various mechanisms. NO levels as high as ~ 48 ppm were observed for flames with moderate to high H2 content and low strain rate. Quantitative reaction pathway diagrams (QRPDs) showed thermal-NO, NNH and prompt-NO pathways to be the major contributors to NO formation at low strain rates, while the NNH pathway was the dominant route for NO formation at high strain rates. The absence of an elaborate CH chemistry in some of the mechanisms has been identified as the reason for underprediction of [NO] in the low strain rate flames. Overall, the quantitative measurements reported in this work serve as a valuable reference for validation of H2/CO chemical kinetic mechanisms, and the detailed numerical studies while providing an insight to the H2:CO kinetics and reaction pathways, have identified key reactions that need further refinement.

Page generated in 0.0685 seconds