• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Image Analysis in the Field of Oil Contamination Monitoring

Ceco, Ema January 2011 (has links)
Monitoring wear particles in lubricating oils allows specialists to evaluate thehealth and functionality of a mechanical system. The main analysis techniquesavailable today are manual particle analysis and automatic optical analysis. Man-ual particle analysis is effective and reliable since the analyst continuously seeswhat is being counted . The drawback is that the technique is quite time demand-ing and dependent of the skills of the analyst. Automatic optical particle countingconstitutes of a closed system not allowing for the objects counted to be observedin real-time. This has resulted in a number of sources of error for the instrument.In this thesis a new method for counting particles based on light microscopywith image analysis is proposed. It has proven to be a fast and effective methodthat eliminates the sources of error of the previously described methods. Thenew method correlates very well with manual analysis which is used as a refer-ence method throughout this study. Size estimation of particles and detectionof metallic particles has also shown to be possible with the current image analy-sis setup. With more advanced software and analysis instrumentation, the imageanalysis method could be further developed to a decision based machine allowingfor declarations about which wear mode is occurring in a mechanical system.

Page generated in 0.0934 seconds