• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Counting Plane Tropical Curves via Lattice Paths in Polygons

Zhang, Yingyu 12 1900 (has links)
A projective plane tropical curve is a proper immersion of a graph into the real Cartesian plane subject to some conditions such as that the images of all the edges must be lines with rational slopes. Two important combinatorial invariants of a projective plane tropical curve are its degree, d, and genus g. First, we explore Gathmann and Markwig's approach to the study of the moduli spaces of such curves and explain their proof that the number of projective plane tropical curves, counting multiplicity, passing through n = 3d + g -1 points does not depend on the choice of points, provided they are in tropical general position. This number of curves is called a Gromov-Written invariant. Second, we discuss the proof of a theorem of Mikhalkin that allows one to compute the Gromov-Written invariant by a purely combinatorial process of counting certain lattice paths.

Page generated in 0.0804 seconds