Spelling suggestions: "subject:"coupe minimal/flow maximal"" "subject:"coupe minimal/flat maximal""
1 |
Détection et suivi d'objets en mouvement dans des scenes complexes, application a la surveillance des conducteurs.Bugeau, Aurélie 20 December 2007 (has links) (PDF)
De nombreuses applications en vision par ordinateur nécessitent la détection et le suivi des objets en mouvement dans une séquence d'images. La plupart des méthodes existantes ne donnent de bons résultats que pour des séquences avec des fonds peu changeants, ou si le fond et les objets sont rigides. Le but de cette thèse est de détecter et suivre les objets mobiles dans des séquences (telles que des séquences de conducteurs) ayant un fond dynamique, avec de forts changements d'illumination, de faibles contrastes et éventuellement acquises par une caméra mobile. Cette thèse est décomposée en deux parties. Dans la première, une méthode de détection est proposée. Elle repose sur la définition d'une grille de points décrits par leur mouvement et leur photométrie. Ces points sont ensuite regroupés en "clusters en mouvement" avec un algorithme mean shift à noyau variable et une méthode de sélection automatique de la taille des noyaux. La deuxième partie propose une méthode de suivi combinant des distributions de couleur et de mouvement, la prédiction de l'objet et des observations extérieures (pouvant être les clusters en mouvement) dans une fonction d'énergie minimisée par coupe minimale/flot maximal dans un graphe. Les algorithmes de détection et de suivi sont validés sur différentes séquences aux contenus dynamiques complexes.
|
2 |
Contributions à la segmentation de séquences d'images au sens du mouvement dans un contexte semi-automatiqueFradet, Matthieu 22 January 2010 (has links) (PDF)
De nombreuses applications en vision par ordinateur nécessitent la distinction et le suivi des différents objets vidéo constituant une scène dynamique. Dans le contexte de la post-production, la qualité visuelle des résultats est une contrainte si forte qu'un opérateur doit pouvoir intervenir facilement et rapidement pour guider efficacement les traitements. Le but de cette thèse est de proposer de nouveaux algorithmes de segmentation au sens du mouvement. Ce document est décomposé en deux parties. Dans la première partie, deux nouvelles méthodes séquentielles et semi-automatiques de segmentation de séquences d'images au sens du mouvement sont proposées. Toutes deux exploitent la représentation d'une scène par un ensemble de couches de mouvement. L'extraction de ces dernières repose sur différents critères (mouvement, couleur, cohérence spatio-temporelle) combinés au sein d'une fonctionnelle d'énergie minimisée par coupe minimale/flot maximal dans un graphe. La seconde partie présente une nouvelle méthode pour le partitionnement automatique d'un ensemble de trajectoires de points d'intérêt. Chaque trajectoire est définie sur un intervalle temporel qui lui est propre et qui correspond aux instants auxquels le point considéré est visible. Comparée à un mouvement estimé entre deux images, l'information de mouvement fournie par une trajectoire offre un horizon temporel étendu qui permet de mieux distinguer des objets dont les mouvements sont différents. Les méthodes sont validées sur différentes séquences aux contenus dynamiques variés.
|
Page generated in 0.1066 seconds