Spelling suggestions: "subject:"couplage magnétoélectrique"" "subject:"couplage magnétostatique""
1 |
Growth of hybrid piezoelectric/magnetostrictive systems for magnetic devices based on surface acoustic wave resonators / Croissance de systèmes hybrides piézoélectriques / magnétostrictifs pour des capteurs magnétiques à ondes acoustiques de surface en géométrie de résonateursPolewczyk, Vincent 06 July 2018 (has links)
Le développement de matériaux avec différents ordres ferroïques couplés (multiferroïques) motive d’intenses activités de recherche. Une combinaison particulièrement intéressante est celle des paramètres d'ordre magnétique et électrique qui, dans le cas favorable où ceux-ci sont couplés, ouvre la voie au contrôle électrique de l’aimantation. Celui-ci peut être envisagé via la manipulation de la polarisation d’un ferroélectrique ou des déformations d’un piézoélectrique Les propriétés du matériau ferroélectrique/piézoélectrique peuvent être inversement modifiées par l’état d’aimantation, ce qui laisse envisager des applications dans le domaine des capteurs de champs magnétiques. Ce travail s’inscrit dans l’étude de systèmes piézoélectrique/ magnétostrictif, avec un intérêt spécifique porté à l’influence de l’aimantation sur les ondes acoustiques de surface (SAW) générées dans le dispositif. Nous avons ainsi déposé des couches polycristallines de Ni, des multicouches [Co/IrMn], ainsi que des couches épitaxiées de TbFe2 sur des substrats de Niobate de Lithium (LNO) de différentes orientations. Sur LNO Z-cut, la croissance de TbFe2 est réalisée en utilisant différentes couches tampons simples ou doubles qui permettent d’obtenir des directions de croissance [111] ou [110] avec des anisotropies magnétiques respectivement perpendiculaire et planaire. Sur des substrats de coupe 128Y et 41Y, la croissance s’avère beaucoup plus complexe mais il est néanmoins possible d’obtenir un film cristallisé de TbFe2 multidomaines avec des relations d’orientation 3D similaires à celles obtenus sur LNO Z-cut, que ce soit entre la couche magnétique et la couche tampon, ou entre la couche tampon et le substrat. Des dispositifs magnétiques à ondes acoustiques de surface (MSAW) ont été ensuite fabriqués dans une géométrie de résonateur permettant une interrogation à distance aisée. La fréquence de résonance des dispositifs MSAW est sensible à l’application d’un champ magnétique externe, via des effets statiques liés à l’orientation de l’aimantation sous champ et via des effets dynamiques d’origine magnétoélastique liés à l’excitation acoustique. Nous avons examiné les réponses magnéto-acoustiques des différents dispositifs, en corrélation étroite avec les propriétés magnétiques statiques, en particulier l’anisotropie, la coercivité et l’hystérèse. Un modèle piézomagnétique équivalent a été utilisé pour simuler certaines de ces réponses. De manière générale, nous montrons qu’un choix judicieux du matériau magnétique et le contrôle de ses propriétés permettent d’élaborer des capteurs spécifiques : un matériau magnétique doux permet de contrôler l’anisotropie de la réponse acoustique via la forme des IDT; un matériau magnétique dur ouvre la voie au développement de capteurs de forts champs magnétiques; un système à anisotropie d’échange dont on peut contrôler la réversibilité de la réponse magnétique permet d’envisager un capteur de champ magnétique hors plan / The development of materials with different coupled ferroic orders (multiferroics) drives an intense research activity. A particularly interesting combination is the case where magnetic and electrical orders are simultaneously present, which, in the favorable case where these are coupled, opens the way to the electrical control of magnetization. This can be achieved in manipulating the polarization in a ferroelectric or the strains in a piezoelectric compound. Ferroelectric or piezoelectric properties can inversely be influenced by the magnetic state, an interesting feature for the development of magnetic field sensors. This work aims in the investigation of piezoelectric/magnetostrictive systems, more especially in the role of the magnetization and of the magnetization versus field behavior on the surface acoustic waves (SAW). Polycristalline Ni films, [Co/IrMn] multilayers and epitaxial TbFe2 films have been deposited on Lithium Niobate (LNO) substrates of different orientations. On LNO Z-cut, various single or double buffer layers have been used to achieve the TbFe2 epitaxial growth, along either [111] or [110] directions and with either perpendicular or in-plane magnetic anisotropy. On LNO 128Y and 41Y substrates, the growth is more complex but it is nevertheless possible to obtain crystalline multidomains TbFe2 films with 3D orientation relationships similar to those obtained on LNO Z-cut, both between the magnetic and the buffer layers, and between the buffer layer and the substrate. Magnetic surface acoustic wave (MSAW) devices have been patterned in a resonator geometry that enables an easy wireless interrogation. The MSAW device resonance frequency is sensitive to an external magnetic field, both via static effects related to the field-induced magnetization changes, and via magnetoelastic dynamic effects related to the acoustic excitation. We have investigated the MSAW magneto acoustic responses of the various devices in close connection with the static magnetic properties, especially the anisotropy, the coercivity and the hysteresis. An equivalent piezomagnetic model could support some of these observations. We show more generally that the proper choice of magnetic material and the control of the magnetic properties helps to build up specific sensors: soft magnetic materials enable to tailor the anisotropy of the MSAW response by engineering the IDT’s shape; hard magnetic materials enable to achieve high field unipolar or bipolar field response; exchange-biased systems in which the reversibility of the magnetic response is achieved let envision the development of sensors for out-of-plane magnetic fields
|
Page generated in 0.0771 seconds