• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 868
  • 181
  • 138
  • 120
  • 41
  • 35
  • 32
  • 28
  • 10
  • 10
  • 9
  • 8
  • 6
  • 6
  • 6
  • Tagged with
  • 1812
  • 314
  • 313
  • 228
  • 212
  • 196
  • 190
  • 180
  • 172
  • 159
  • 158
  • 149
  • 129
  • 120
  • 118
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
51

SPECKLE MEASUREMENTS WITH A CCD ARRAY: APPLICATIONS TO SPECKLE REDUCTION.

EICHEN, ELLIOT GENE. January 1982 (has links)
Speckle noise is an integral part of any laser projection display because it is the nature of laser (coherent) illumination to form interference patterns with high visibility. The granularity of the image due to the speckle formed on the viewer's retina degrades the image quality, thus stimulating the need for speckle reduction techniques applied to laser displays. An instrument to measure image plane speckle contrast was built based on a linear CCD detector array interfaced to an LSI-11 microcomputer. Speckle reduction techniques were then evaluated by comparing the contrast obtained with each method. The effect of the spatial frequency response (MTF) on the measured contrast was studied, along with the statistical significance of the measurement which is limited by the finite sample space of 1024 detector pixels per CCD frame. The lowering of the contrast due to the array MTF can be minimized by working at extremely high F numbers (> 100). The sample space can be widened by taking more than one frame of data and treating all the frames as a single data set. Techniques to reduce speckle noise in laser displays fall into two broad categories: reducing the coherence of light forming the speckle, and incoherently adding multiple uncorrelated (or partially correlated) speckle patterns. The first technique (effective only for monochromatic displays) was implemented by coating a screen with various dyes, phosphors, or fluorescent paints. Using the 514 nm line from an Argon laser, the contrast can be reduced by almost 30% by spraying a thin layer of fluorescent paint on the screen. More speckle reduction can be achieved with an accompanying loss in image brightness. The second technique involved creating a multiplicity of partially correlated speckle patterns that appear from the same position on the screen over the integration period of the eye. The different speckle patterns are produced by changing the angle of illumination while keeping a portion of the laser spot focused on the same point on the screen. The scan angle method (applicable to multi-color displays), can be implemented by properly synchronizing an acousto-optic modulator with the scan optics, and imaging the modulator on the screen. Using a beaded screen and a reasonable laser dither of 10 millirads, the contrast can be reduced by half.
52

Evaluation of correlated double sampling used with solid state imagers

Wang, Yi-Fu, 1958- January 1989 (has links)
Correlated double sampling (CDS) is a widely used signal processing technique for removal of the Nyquist (reset) noise which is associated with charge sensing circuits employed in a solid state imager. In this thesis work, the power spectral density at the output of a correlated double sampling circuit with first-order low-pass filtered white noise at the input is calculated. A circuit constructed with discrete elements is made to simulate the output stage of a charge-coupled device (CCD). A low-pass filtered wide-band noise from a noise generator is added to the reset reference level when the output signal from this simulator is sampled by the correlated double sampling technique. The experiment measurements show that only about 10% of the noise power measured by simple sampling is obtained when CDS is employed. An autoregressive (AR) model is assumed to fit the sampled data and a recursive algorithm, based on least-squares solutions for the AR parameters using forward and backward linear prediction, is adopted for spectrum estimation. Some conclusions on choosing the bandwidth of the low pass filter for optimum operation is also included.
53

Novel routes to DLC and related wear coatings

Crawford, Richard I. January 1998 (has links)
No description available.
54

The characterisation of serotonin receptors in the parasitic nematode Ascaris suum

Brooman, Julie Elizabeth January 1998 (has links)
No description available.
55

Solute transport and intracellular pH in intestinal epithelial cells

Armstrong, Gillian January 1996 (has links)
No description available.
56

Terahertz detection and electric field domains in multiple quantum wells

Tomlinson, Andrew Michael January 1999 (has links)
No description available.
57

Optical studies of tunnelling in semiconductor quantum well systems

Stone, Robert John January 1997 (has links)
No description available.
58

The Differential Regulation of Subtypes of N-methyl-D-aspartate Receptors in CA1 Hippocampal Neurons by G Protein Coupled Receptors

Yang, Kai 06 December 2012 (has links)
The role of NMDAR subtypes in synaptic plasticity is very controversial, partially caused by the lack of specific GluN2A containing NMDA receptor (GluN2AR) antagonists. Here we took a novel approach to selectively modulate NMDAR subtype activity and investigated its role in the induction of plasticity. Whole cell recording in both acutely isolated CA1 cells and hippocampal slices demonstrated that pituitary adenylate cyclase activating peptide 1 receptors (PAC1 receptors), which are Gαq coupled receptors, selectively recruited Src kinase and enhanced currents mediated by GluN2ARs. In addition, biochemical experiments showed that the activation of PAC1 receptors phosphorylated GluN2ARs specifically. In contrast, vasoactive intestinal peptide receptors (VPAC receptors), which are Gαs coupled receptors, selectively stimulated Fyn kinase, potentiated currents mediated by GluN2B containing NMDARs (GluN2BRs). Furthermore, dopamine D1 receptor activation (another Gαs coupled receptor) specifically phosphorylated GluN2BRs. Interestingly, field recording experiments showed that PAC1 receptor activation lowered the threshold for LTP whilst LTD was enhanced by dopamine D1 receptor activation. In conclusion, the activity of GPCRs can signal through different pathways to selectively modulate absolute contribution of GluN2ARs versus GluN2BRs in CA1 neurons via Src family kinases. Furthurmore, Epac, activated by some Gαs coupled receptors, also modulated NMDAR currents via a PKC/Src dependent pathway, but whether it selectively modulates NMDAR subtypes, and has capacity to change the induction of plasticity, requires further study. By this means, we can investigate the role of NMDAR subtypes in the direction of synaptic plasticity by selectively modulating the activity of GluN2ARs or GluN2BRs. In addition, based on my work, some interfering peptides and drugs can be designed and used to selectively inhibit the activity of GluN2BRs and GluN2ARs by interrupting Fyn- and Src - mediated signaling cascade respectively. It will provide new candidate drugs for the treatment of some neurological diseases such as Alzheimer disease (AD) and schizophrenia.
59

Radiation damage in charge coupled devices

Smith, David Ryan January 2003 (has links)
This thesis is concerned with the effects of radiation damage in CCDs used for space applications. The manufacturing process and operational principles of CCDs are presented in Chapter 2. The components of the space radiation environment, the two radiation damage mechanisms relevant to CCDs, and the effects of radiation on the operational characteristics of CCDs are described in Chapter 3. Chapter 4 presents a study to assess the suitability of novel L3Vision technology to applications in space. Two L3Vision CCDs were subjected to proton irradiations representative of doses expected to be received by spacecraft in low Earth orbit. Post-irradiation the devices were found to operate as expected, the effects of radiation on the operational characteristics of the devices being comparable to previous studies. The effect of low energy protons on CCDs is the subject of Chapter 5. The study was initiated in response to the finding that soft protons could be focused by the mirror modules of the XMM-Newton spacecraft onto the EPIC CCD detectors. Two EPIC devices were irradiated with protons of a few keV to find that soft protons cause more damage than that expected by the NIEL damage relationship, as they deposit most of their energy within the CCD. The observed change in CTI of the EPIC devices on XMM-Newton is however comparable to the pre-launch prediction, and the component attributable to low energy protons is small, < 20%. Chapter 6 presents a study of a specific radiation induced phenomenon, `Random Telegraph Signals'. Development of analysis software and the irradiation of two CCDs are discussed before a detailed characterisation of the generated RTS pixels is presented. The study shows that the mechanism behind RTS involves a bi-stable defect linked with the E-centre, in combination with the high field regions of a CCD pixel.
60

Linear and nonlinear optics in coupled waveguide arrays

De Nobriga, Charles January 2013 (has links)
The following thesis is comprised of four main areas of work. These are centred around the experimental observation of phenomena associated with both linear and non-linear optics in silicon photonic-wires. As a comparison, I also discuss a similar coupled-waveguide system; dual-core hollow-core photonic crystal fibre. To introduce the reader to this work, the first chapter will recap some undergraduate level theory; a general introduction to optical waveguides. It is not intended to be a complete theoretical picture, as many beautiful texts on optics already exist [1–3]. This chapter concerns itself only with the aspects of optics with which the author was intimately aware of throughout the completion of this thesis. Thereafter, the chapters become specific to the particular experiments undertaken. Each one follows a simple framework: examination of the relevant theory, extending upon that already discussed in the first chapter, a literature review and finally a discussion of the work I completed within this thesis. Chapter 2 is the only chapter not related to silicon based photonics. Here I discuss dual-core hollow-core photonic crystal fibres; including guidance mechanisms, fabrication methods and the numerical modelling techniques employed in my work. I will compare these numerical results to experimental results taken by colleagues at the university of Bath. Chapter 3 analyses linear propagation in arrays of silicon photonic wires. I extend the simple picture of light propagating in waveguides to discuss the di↵erent types of dispersion inherent in this system and how dispersion tailoring can be achieved; with reference to the other literature on this topic. Experimental results are examined and discussed. Chapters 4 and 5 discuss non-linear propagation in silicon photonic wire arrays; modulation instability and spatio-temporal solitons respectively. In each case I extend the ideas on non-linearity presented in Chapter 1 to explain both modulation instability and optical solitons. Detailed descriptions of the experiments undertaken, and associated numerical modelling completed are then discussed. Whilst the work I present is incomplete, I will discuss subsequent work performed by my colleagues at the University of Bath based on my initial work. Finally, Chapter 6 draws together my conclusions.

Page generated in 0.074 seconds