• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 4
  • 1
  • Tagged with
  • 4
  • 4
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Extraction de caractéristiques : contours multispectraux, contours de texture et routes

Auclair Fortier, Marie-Flavie. January 2000 (has links)
Thèses (M.Sc.)--Université de Sherbrooke (Canada), 2000. / Titre de l'écran-titre (visionné le 20 juin 2006). Publié aussi en version papier.
2

Contours actifs d´ordre supérieur et leur application à la détection de linéiques dans des images de télédétection

Rochery, Marie 28 September 2005 (has links) (PDF)
Cette thèse aborde le problème de l´introduction d´une connaissance a priori sur la géométrie de l´objet à détecter dans le cadre général de la reconnaissance de formes dans une image. L´application choisie pour illustrer ce problème est la détection de réseaux de linéiques dans des images satellitaires et aériennes. Nous nous placons dans le cadre des contours actifs et nous introduisons une nouvelle classe de contours actifs d´ordre supérieur. Cette classe permet la création de nouveaux modèles rendant possible l´incorporation d´informations géométriques fortes définissant plutôt qu´une forme spécifique, une famille générale de formes. Nous étudions un cas particulier d´énergie quadratique qui favorise des structures à plusieurs bras de largeur à peu près constante et connectés entre eux. L´énergie étudiée ainsi que des termes linéaires de longueur et d´aire sont utilisés comme termes d´a priori pour les modèles d´extraction de linéiques que nous proposons. Plusieurs termes d´attache aux données sont proposés dont un terme quadratique permettant de lier la géométrie du contour et les propriétés de l´image. Un modèle d´extraction permettant de gérer les occultations est également présenté. Pour permettre la minimisation de l´énergie, nous développons un cadre méthodologique utilisant les courbes de niveau. Les forces non locales sont calculées sur le contour extrait avant d´être étendues sur tout le domaine considéré. Finalement, afin de résoudre certaines difficultés rencontrées avec les contours actifs standards ainsi que les nouveaux modèles, nous proposons d´utiliser des modèles de champs de phase pour modéliser les régions. Cette méthodologie offre une alternative avantageuse aux techniques classiques et nous définissons des modèles d´extraction de linéiques similaires aux contours actifs d´ordre supérieur dans ce cadre. La pertinence de tous les modèles proposés est illustrée sur des images satellitaires et aériennes réelles.
3

Modélisation de la dépendance et mesures de risque multidimensionnelles

Di Bernardino, Éléna 08 December 2011 (has links) (PDF)
Cette thèse a pour but le développement de certains aspects de la modélisation de la dépendance dans la gestion des risques en dimension plus grande que un. Le premier chapitre est constitué d'une introduction générale. Le deuxième chapitre est constitué d'un article s'intitulant " Estimating Bivariate Tail : a copula based approach ", soumis pour publication. Il concerne la construction d'un estimateur de la queue d'une distribution bivariée. La construction de cet estimateur se fonde sur une méthode de dépassement de seuil (Peaks Over Threshold method) et donc sur une version bivariée du Théorème de Pickands-Balkema-de Haan. La modélisation de la dépendance est obtenue via la Upper Tail Dependence Copula. Nous démontrons des propriétés de convergence pour l'estimateur ainsi construit. Le troisième chapitre repose sur un article: " A multivariate extension of Value-at-Risk and Conditional-Tail-Expectation", soumis pour publication. Nous abordons le problème de l'extension de mesures de risque classiques, comme la Value-at-Risk et la Conditional-Tail-Expectation, dans un cadre multidimensionnel en utilisant la fonction de Kendall multivariée. Enfin, dans le quatrième chapitre de la thèse, nous proposons un estimateur des courbes de niveau d'une fonction de répartition bivariée avec une méthode plug-in. Nous démontrons des propriétés de convergence pour les estimateurs ainsi construits. Ce chapitre de la thèse est lui aussi constitué d'un article, s'intitulant " Plug-in estimation of level sets in a non-compact setting with applications in multivariate risk theory", accepté pour publication dans la revue ESAIM:Probability and Statistics.
4

Modélisation de la dépendance et mesures de risque multidimensionnelles / Dependence modeling and multidimensional risk measures

Di Bernardino, Éléna 08 December 2011 (has links)
Cette thèse a pour but le développement de certains aspects de la modélisation de la dépendance dans la gestion des risques en dimension plus grande que un. Le premier chapitre est constitué d'une introduction générale. Le deuxième chapitre est constitué d'un article s'intitulant « Estimating Bivariate Tail : a copula based approach », soumis pour publication. Il concerne la construction d'un estimateur de la queue d'une distribution bivariée. La construction de cet estimateur se fonde sur une méthode de dépassement de seuil (Peaks Over Threshold method) et donc sur une version bivariée du Théorème de Pickands-Balkema-de Haan. La modélisation de la dépendance est obtenue via la Upper Tail Dependence Copula. Nous démontrons des propriétés de convergence pour l'estimateur ainsi construit. Le troisième chapitre repose sur un article: « A multivariate extension of Value-at-Risk and Conditional-Tail-Expectation», soumis pour publication. Nous abordons le problème de l'extension de mesures de risque classiques, comme la Value-at-Risk et la Conditional-Tail-Expectation, dans un cadre multidimensionnel en utilisant la fonction de Kendall multivariée. Enfin, dans le quatrième chapitre de la thèse, nous proposons un estimateur des courbes de niveau d'une fonction de répartition bivariée avec une méthode plug-in. Nous démontrons des propriétés de convergence pour les estimateurs ainsi construits. Ce chapitre de la thèse est lui aussi constitué d'un article, s'intitulant « Plug-in estimation of level sets in a non-compact setting with applications in multivariate risk theory», accepté pour publication dans la revue ESAIM:Probability and Statistics. / In this PhD thesis we consider different aspects of dependence modeling with applications in multivariate risk theory. The first chapter is constituted by a general introduction. The second chapter is essentially constituted by the article “Estimating Bivariate Tail: a copula based approach”, actually submitted for publication. It deals with the problem of estimating the tail of a bivariate distribution function. We develop a general extension of the POT (Peaks-Over-Threshold) method, mainly based on a two-dimensional version of the Pickands-Balkema-de Haan Theorem. The dependence structure between the marginals in the upper tails is described by the Upper Tail Dependence Copula. Then we construct a two-dimensional tail estimator and study its asymptotic properties. The third chapter of this thesis is based on the article “A multivariate extension of Value-at-Risk and Conditional-Tail-Expectation” and submitted for publication. We propose a multivariate generalization of risk measures as Value-at-Risk and Conditional-Tail-Expectation and we analyze the behavior of these measures in terms of classical properties of risk measures. We study the behavior of these measures with respect to different risk scenarios and stochastic ordering of marginals risks. Finally in the fourth chapter we introduce a consistent procedure to estimate level sets of an unknown bivariate distribution function, using a plug-in approach in a non-compact setting. Also this chapter is constituted by the article “Plug-in estimation of level sets in a non-compact setting with applications in multivariate risk theory”, accepted for publication in ESAIM: Probability and Statistics journal.

Page generated in 0.0771 seconds