• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Zwitterionic Separation Materials for Liquid Chromatography and Capillary Electrophoresis : Synthesis, Characterization and Application for Inorganic Ion and Biomolecule Separations

Jiang, Wen January 2003 (has links)
<p>Liquid Chromatography (LC) and Capillary Electrophoresis (CE) are modern analytical techniques that play very important roles in many areas of modern science such as life science, biotechnology, biomedicine, environmental studies, and development of pharmaceutics. Even though these two techniques have existed and been subjected to studies for several decades, the developments of new separation materials for them are still very important till now in order to meet the different new demands for improvement from other disciplines in science.</p><p>In this doctoral thesis, several novel covalently bonded sulfobetaine type zwitterionic separation materials are synthesized for the application in LC and CE. These materials carry both positively charged quaternary ammonium groups and negatively charged sulfonic groups, which result in a very low net surface charge compared to conventional separation materials with only anionic or cationic functional groups. Consequently, it is possible to employ these materials for separation of different ionic species under mild conditions. The surface properties have also been characterized, mainly by elemental analysis, sorption isotherm, ζ-potential measurements, and spectroscopic methods.</p><p>By using packed zwitterionic columns for liquid chromatography, small inorganic anions or cations, and acidic or basic proteins can be independently and simultaneously separated in a single run using optimal sets of separation conditions. This is a unique property compared to conventional ionic separation material for LC. When fused silica capillaries coated with zwitterionic polymer are used for capillary electrophoresis, good separations can be achieved for solutes as different as inorganic anions, peptides, proteins, and tryptically digested proteins.</p>
2

Zwitterionic Separation Materials for Liquid Chromatography and Capillary Electrophoresis : Synthesis, Characterization and Application for Inorganic Ion and Biomolecule Separations

Jiang, Wen January 2003 (has links)
Liquid Chromatography (LC) and Capillary Electrophoresis (CE) are modern analytical techniques that play very important roles in many areas of modern science such as life science, biotechnology, biomedicine, environmental studies, and development of pharmaceutics. Even though these two techniques have existed and been subjected to studies for several decades, the developments of new separation materials for them are still very important till now in order to meet the different new demands for improvement from other disciplines in science. In this doctoral thesis, several novel covalently bonded sulfobetaine type zwitterionic separation materials are synthesized for the application in LC and CE. These materials carry both positively charged quaternary ammonium groups and negatively charged sulfonic groups, which result in a very low net surface charge compared to conventional separation materials with only anionic or cationic functional groups. Consequently, it is possible to employ these materials for separation of different ionic species under mild conditions. The surface properties have also been characterized, mainly by elemental analysis, sorption isotherm, ζ-potential measurements, and spectroscopic methods. By using packed zwitterionic columns for liquid chromatography, small inorganic anions or cations, and acidic or basic proteins can be independently and simultaneously separated in a single run using optimal sets of separation conditions. This is a unique property compared to conventional ionic separation material for LC. When fused silica capillaries coated with zwitterionic polymer are used for capillary electrophoresis, good separations can be achieved for solutes as different as inorganic anions, peptides, proteins, and tryptically digested proteins.

Page generated in 0.0569 seconds