Spelling suggestions: "subject:"crater thinopyrum"" "subject:"crater aeropyrum""
1 |
Effects of Soil Amendments and Biostimulants on the Post-transplant Growth of Landscape TreesKelting, Matthew P. 07 February 1997 (has links)
Use of soil amendments at planting is one of the time-honored traditions in horticulture, although their effectiveness has been questioned by many. Recently, humate and humate-based products, generally known as biostimulants, have been marketed to increase transplant success. In this study, three experiments were conducted to examine the effects of soil amendments and biostimulants on post-transplant growth of landscape trees. The first experiment, conducted in a greenhouse, determined the effects of several biostimulant treatments (granular humate, water-soluble humate, liquid humate, liquid humate+ = humic acid, hormones, and vitamins) and fertilizer levels (low, medium, high) on the growth of container-grown Corylus colurna L. (Turkish hazelnut) seedlings. Biostimulants did not increase top growth compared to control treatments, but root growth was increased by granular humate at a medium fertilizer rate. The second experiment examined the effects of biostimulants (granular humate, water-soluble humate, liquid humate+) on the post-transplant root growth and sap-flow of landscape-sized balled and burlapped Acer rubrum L. (red maple) grown in root observation compartments (rhizotrons). Biostimulants did not increase root growth over control treatments, but sap-flow was increased. The third experiment, conducted in the field (Groseclose silt loam soil) investigated the effects of soil amendments (peat, and compost) and biostimulants (granular humate, and liquid humate+) on the post-transplant growth of Crataegus phaenopyrum (Blume) Hara (Washington hawthorn) and red maple transplanted bare-root, and grown under combinations of irrigated vs non-irrigated and fertilized-at-planting vs non-fertilized-at-planting regimes. Hawthorn controls generally had less top growth than the other soil treatments as a whole. No soil treatment was higher than control for top growth of red maple. However, root growth of red maple was highest in the peat-treated trees. Stem diameter and dry mass for the control and compost treatments were higher than the biostimulant treatments in irrigated plots, but no differences were observed in non-irrigated plots. Granular humate-treated trees resulted in higher stem diameter and dry mass than the liquid humate+-treated trees in non-irrigated plots. There were no effects of fertilizer, or irrigation on growth after two growing seasons for either species. / Master of Science
|
2 |
Characterization of water stress during cold storage and establishment for Acer platanoides and Crataegus phaenopyrumBates, Ricky Martin 07 June 2006 (has links)
This study examined the affects of desiccation during and after cold storage on the physiology, growth, and marketability of bare-root Acer platanoides (Norway maple), Crataegus phaenopyrum (Washington hawthorn) and Prunus x yedoensis (Yoshino cherry). Histological examination of Acer and Crataegus stems was also conducted. Maple and cherry trees were transplanted into pine bark-filled containers and subjected to mist or non-mist treatments. Xylem water potential increased (became less negative) for misted maple and cherry trees. Water potential increased for non-misted maple and decreased for non-misted cherry trees. Maple and hawthorn seedlings were subjected to cold storage durations of 2, 4, 6, 8, 10, and 12 weeks and storage treatments: whole plant covered, shoots exposed, roots exposed and whole plant exposed. Shoot (Ψ<sub>s</sub>) and root (Ψ<sub>r</sub>) water potentials for all treatments and both species decreased during storage. For maple, (Ψ<sub>s</sub>) and (Ψ<sub>r</sub>) of the exposed shoot treatment were the same as the whole plant covered treatment. In contrast, hawthorn (Ψ<sub>s</sub>) and (Ψ<sub>r</sub>) of the exposed shoot treatment were lower (more negative) than for the whole plant covered treatment. Root hydraulic conductivity was the same for both species and decreased with increased storage duration and for treatments with exposed roots. For the root covered treatments, maple root growth potential (RGP) increased while hawthorn RGP decreased with increased cold storage duration. RGP for both species remained low throughout storage for treatments exposing roots. Days to bud break for Acer and Crataegus seedlings decreased with increased storage time for the whole plant covered treatments but increased for both species when stored with exposed roots. Maple marketability, percent of trees with ≤ 10% shoot dieback, for root covered treatments was high for most storage durations. Hawthorn marketability was generally low except for the whole plant covered treatment during the first six weeks of storage. There was a high positive correlation between RGP and marketability for both maple and hawthorn. Histological examination revealed that Acer stems had a highly suberized periderm, and a uniform cuticle with few disruptions. Periderm suberization of Crataegus stems was variable and extensive peridermal cracking was evident. Cuticle wax decreased with increasing distance from the stem apex for both species. Collectively, results indicated that hawthorn stems had more pathways for water loss than maple shoots. While protection of roots of all bare-root stock is important, desiccation sensitive species such as Washington hawthorn require both root and shoot protection during storage and at transplanting to minimize water loss. / Ph. D.
|
Page generated in 0.0624 seconds