• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • No language data
  • Tagged with
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Identifying Potential Applications for Lamina Emergent Mechanisms and Evaluating Their Suitability for Credit-Card-Sized Products

Albrechtsen, Nathan Bryce 09 December 2010 (has links) (PDF)
Lamina emergent mechanisms (LEMs) are a maturing technology that is prepared for commercial implementation into new products. LEMs are defined by three functional characteristics; they (1) are compliant, (2) are fabricated from planar materials, and (3) emerge from a flat initial state. Advantages, design challenges, and design tools are described for each of the functional characteristics. Opportunities for LEMs are discussed, namely disposable LEMs, novel arrays of LEMs, scaled LEMs, LEMs with surprising motion, shock absorbing LEMs, and deployable LEMs. Technology push product development processes were employed to select applications for LEMs. LEM technology was characterized. In a LEM workshop, eighteen industry professionals then helped identify over 200 potential applications for the technology. The applications were evaluated, and the most promising ideas that were identified for each LEM opportunity are described with graphics of possible product embodiments. Of the various product opportunities enabled by LEMs, deployable mechanisms – particularly in the credit card size – are among the most viable. The compactness and portability of credit-card-sized products create a strong motivation for their development. Expanding the capabilities of credit-card-sized mechanisms to include more sophisticated motions and a broader range of tasks may dramatically increase their market potential. A review of the current state-of-the-art in credit-card-sized mechanisms reveals two primary classes of mechanisms most commonly used in this form factor: rigid-body mechanisms and in-plane compliant mechanisms. The limitations of each and corresponding LEM advantages are described. Criteria for determining whether a product is a suitable candidate for using LEM technology to create or improve a credit-card-sized product are established. The advantages of LEMs in credit-card-sized products are illustrated through an example product: a compact lancing device that could be used as a main component for a highly portable epinephrine syringe.

Page generated in 0.0455 seconds