Spelling suggestions: "subject:"prelu"" "subject:"crear""
1 |
Optimal Learning Rates for Neural NetworksMoncur, Tyler 30 July 2020 (has links)
Neural networks have long been known as universal function approximators and have more recently been shown to be powerful and versatile in practice. But it can be extremely challenging to find the right set of parameters and hyperparameters. Model training is both expensive and difficult due to the large number of parameters and sensitivity to hyperparameters such as learning rate and architecture. Hyperparameter searches are notorious for requiring tremendous amounts of processing power and human resources. This thesis provides an analytic approach to estimating the optimal value of one of the key hyperparameters in neural networks, the learning rate. Where possible, the analysis is computed exactly, and where necessary, approximations and assumptions are used and justified. The result is a method that estimates the optimal learning rate for a certain type of network, a fully connected CReLU network.
|
2 |
Hyperparameters for Dense Neural NetworksHettinger, Christopher James 01 July 2019 (has links)
Neural networks can perform an incredible array of complex tasks, but successfully training a network is difficult because it requires us to minimize a function about which we know very little. In practice, developing a good model requires both intuition and a lot of guess-and-check. In this dissertation, we study a type of fully-connected neural network that improves on standard rectifier networks while retaining their useful properties. We then examine this type of network and its loss function from a probabilistic perspective. This analysis leads to a new rule for parameter initialization and a new method for predicting effective learning rates for gradient descent. Experiments confirm that the theory behind these developments translates well into practice.
|
Page generated in 0.0208 seconds