• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 3
  • Tagged with
  • 4
  • 4
  • 4
  • 4
  • 4
  • 3
  • 3
  • 3
  • 3
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Seepage induced instability in widely graded soils

Li, Maoxin 11 1900 (has links)
Internal instability of a widely graded cohesionless soil refers to a phenomenon in which its finer particles migrate within the void network of its coarser particles, as a result of seepage flow. Onset of internal instability of a soil is governed by a combination of geometric and hydromechanical constraints. Much concern exists for embankment dams and levees built using soils with a potential for internal instability. Migration of finer particles to a boundary where they can exit, by washing out, may cause erosion or piping failure and, occasionally, induce collapse of these soil structures. There is a need, in professional practice, to better understand the phenomenon and to develop improved methods to evaluate the susceptibility of a soil. A series of permeameter tests was performed on six widely-graded cohesionless materials. The objectives are to assess the geometric indices proposed for evaluation of susceptibility, and examine hydromechanical factors influence the onset of internal instability. A modified slurry mixing technique, with discrete deposition, was found satisfactory for reconstitution of the homogeneous saturated test specimens. The onset of internal instability was founded to be triggered by a combination of effective stress and hydraulic gradient. The finding yields a hydromechanical envelope, unique for a particular gradation shape, at which internal instability initiated. Three commonly used geometric criteria were comprehensively evaluated with reference to these experimental data and also a database compiled from the literature. The relative conservatism of each criterion was examined and a modified semi-empirical geometric rule then proposed based on the capillary tube model. A theoretical framework for plotting the hydromechanical envelope was established based on an extension of the α concept of Skempton and Brogan, and subsequently verified by test data. Finally, a novel unified approach was proposed to assess the onset of internal instability, based on combining geometric and hydromechanical indices of a soil.
2

Seepage induced instability in widely graded soils

Li, Maoxin 11 1900 (has links)
Internal instability of a widely graded cohesionless soil refers to a phenomenon in which its finer particles migrate within the void network of its coarser particles, as a result of seepage flow. Onset of internal instability of a soil is governed by a combination of geometric and hydromechanical constraints. Much concern exists for embankment dams and levees built using soils with a potential for internal instability. Migration of finer particles to a boundary where they can exit, by washing out, may cause erosion or piping failure and, occasionally, induce collapse of these soil structures. There is a need, in professional practice, to better understand the phenomenon and to develop improved methods to evaluate the susceptibility of a soil. A series of permeameter tests was performed on six widely-graded cohesionless materials. The objectives are to assess the geometric indices proposed for evaluation of susceptibility, and examine hydromechanical factors influence the onset of internal instability. A modified slurry mixing technique, with discrete deposition, was found satisfactory for reconstitution of the homogeneous saturated test specimens. The onset of internal instability was founded to be triggered by a combination of effective stress and hydraulic gradient. The finding yields a hydromechanical envelope, unique for a particular gradation shape, at which internal instability initiated. Three commonly used geometric criteria were comprehensively evaluated with reference to these experimental data and also a database compiled from the literature. The relative conservatism of each criterion was examined and a modified semi-empirical geometric rule then proposed based on the capillary tube model. A theoretical framework for plotting the hydromechanical envelope was established based on an extension of the α concept of Skempton and Brogan, and subsequently verified by test data. Finally, a novel unified approach was proposed to assess the onset of internal instability, based on combining geometric and hydromechanical indices of a soil.
3

Seepage induced instability in widely graded soils

Li, Maoxin 11 1900 (has links)
Internal instability of a widely graded cohesionless soil refers to a phenomenon in which its finer particles migrate within the void network of its coarser particles, as a result of seepage flow. Onset of internal instability of a soil is governed by a combination of geometric and hydromechanical constraints. Much concern exists for embankment dams and levees built using soils with a potential for internal instability. Migration of finer particles to a boundary where they can exit, by washing out, may cause erosion or piping failure and, occasionally, induce collapse of these soil structures. There is a need, in professional practice, to better understand the phenomenon and to develop improved methods to evaluate the susceptibility of a soil. A series of permeameter tests was performed on six widely-graded cohesionless materials. The objectives are to assess the geometric indices proposed for evaluation of susceptibility, and examine hydromechanical factors influence the onset of internal instability. A modified slurry mixing technique, with discrete deposition, was found satisfactory for reconstitution of the homogeneous saturated test specimens. The onset of internal instability was founded to be triggered by a combination of effective stress and hydraulic gradient. The finding yields a hydromechanical envelope, unique for a particular gradation shape, at which internal instability initiated. Three commonly used geometric criteria were comprehensively evaluated with reference to these experimental data and also a database compiled from the literature. The relative conservatism of each criterion was examined and a modified semi-empirical geometric rule then proposed based on the capillary tube model. A theoretical framework for plotting the hydromechanical envelope was established based on an extension of the α concept of Skempton and Brogan, and subsequently verified by test data. Finally, a novel unified approach was proposed to assess the onset of internal instability, based on combining geometric and hydromechanical indices of a soil. / Applied Science, Faculty of / Civil Engineering, Department of / Graduate
4

Laboratory Modeling of Critical Hydraulic Conditions for the Initiation of Piping

Fleshman, Mandie Swainston 01 December 2012 (has links)
Seepage-related erosion is one of the predominant mechanisms responsible for incidents and failures of dams and levees. Current geotechnical engineering practice consists of comparing expected exit gradients with the critical gradient of the soil at the seepage exit point. The critical gradient is generally considered as the ratio of soil buoyant unit weight and the unit weight of water, suggesting that the critical gradient only depends on the void ratio and specific gravity of the solids. However, in the field and in research, it has been observed that piping can initiate at average gradients much lower than unity due to concentrations in flow and non-vertical exit faces. Therefore, there is a need for deeper understanding of the granular scale mechanisms of the piping erosion process. This thesis presents the results of a laboratory study to assess the effects that soil properties and exit face configurations have on the potential for initiation of piping and the piping mechanisms. By using a laboratory device designed and constructed specifically for this study, the critical gradients needed to initiate piping in a variety of sandy soils were measured to assess the effects that parameters such as gradation, grain size, and grain shape have on the critical gradients. The tests are also used to observe the grain scale mechanisms of piping erosion initiation. The ultimate goal of the study is to develop an empirical, but mechanism-based, grain-scale model that can take into account the effects of converging flows, non-horizontal exit faces, and soil properties while assessing the potential for piping erosion to occur.

Page generated in 0.0957 seconds