• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Sub-Grain Characterization of Slip Activity in BCC Tantalum

Russell, Tristan Kirby 07 April 2022 (has links)
BCC metals are commonly used throughout the world and understanding their deformation behavior, especially at the sub-grain level, is essential for their continued use in technological advancements. Correctly and confidently characterizing the active slip systems in BCC materials has been a difficult task throughout past research. The research described in this thesis utilizes high resolution digital image correlation (HRDIC) and relative displacement ratio (RDR) analysis to accurately characterize active slip systems in large grained BCC tantalum and provides new insights into dislocation nucleation sites, relative CRSS values for {110} and {112} slip systems, the correlation between GB transmission factors and strain gradients, the relative length of NBGZs, and slip transmission. A 99.99% pure tantalum oligo sample was sputtered with gold and remodeled to provide high resolution data points to be used in HRDIC. The high resolution of the gold remodeled samples combined with a RDR analysis made it possible to confidently identify active slip systems during tensile deformation at room temperature. One of the observations from this analysis was the discrepancy between the observed active slip systems and those predicted from a simple single-CRSS Schmid's Law. By considering the active systems observed in grains with a range of orientation, it was concluded that the {112} slip systems have a higher CRSS than the {110} by 6.7%. Independent CPFE simulations and experiments on single crystal samples of the same material, agreed with our findings establishing a range of increased CRSS for {112} of 3.9%-7.1%. These conclusions are compared with the small number of available estimates of the CRSS ratio, and lie in between the value of equal CRSS used by most modelers, and experimental estimates of 15-25% higher for {112}. The identified active slip systems were also used in the Luster and Morris equation to calculate each GBs transmissivity factor - an estimate of strain incompatibility between neighboring grains. Results indicate that there is an inverse correlation between GB transmissivity and strain gradient slope, as well as a positive correlation between GB transmissivity and slip trace reorientation for some GBs. Only one instance of slip transmission was observed from the 24 GBs analyzed, suggesting it is an uncommon occurrence in BCC tantalum. An analysis of the length of the NBGZ in relation to slip and strain gradients was compared to previous studies and suggests the relative and absolute length of the NBGZ changes with grain size, at least for large length scales. Strain gradients for each side of the GB were measured and results indicated steep negative strain gradient slopes that suggest dislocation nucleation in the GBs and propagation towards the interior of the grain. When compared against the transmissivity factor, an inverse relationship was found to exist between strain gradients and high transmissivity factors.
2

Deformation behaviour and twinning mechanisms of commercially pure titanium alloys

Battaini, Michael January 2008 (has links)
The deformation behaviour and twinning mechanisms of commercially pure titanium alloys were investigated using complementary diffraction techniques and crystal plasticity modelling. The main motivation for conducting this investigation was to improve understanding of the deformation of titanium to help achieve the long term aim of reducing manufacturing and design costs. The deformation behaviour was characterised with tension, compression and channel die compression tests for three important variables: orientation; temperature from 25 C to 600 C; and composition for two contrasting alloys, CP-G1 and CP-G4. The experimental data used to characterise the behaviour and determine the mechanisms causing it were: textures determined by X-ray diffraction; twin area fractions for individual modes determined using electron back-scatter diffraction; and lattice strains measured by neutron diffraction. A strong effect of the orientation–stress state conditions on the flow curves (flow stress anisotropy) was found. The propensity for prism hai slip was the dominant cause of the behaviour – samples that were more favourably oriented for prism hai slip had lower flow stresses. Twinning was the most significant secondary deformation mode in the CP-G1 alloy but only had a minor effect on flow stress anisotropy in most cases. In the CP-G4 alloy twinning generally did not play a significant role indicating that hc + ai slip modes were significant in this alloy. Differences in the flow stress anisotropy between the two alloys were found to occur largely in the elasto-plastic transition and initial period of hardening. Modelling results indicated that larger relative resolved shear stress values for secondary deformation modes in the higher purity alloy increased the initial anisotropy. Decreasing flow stresses with increasing temperature were largely caused by a decrease in the critical resolved shear stress (CRSS) values for slip, but also by a decrease in the Hall-Petch parameter for slip. The propagation of twinning was found to be orientation dependent through a Schmid law in a similar way to slip – it was activated at a CRSS and hardened so that an increasing resolved shear stress was required for it to continue operating. The CRSS values determined for the individual twin modes were – 65MPa, 180MPa, 83MPa for {1012}, {1122} and {1011} twinning, respectively. Further, twinning was found to be temperature insensitive except when the ability to nucleate twins posed a significant barrier (for {1011} twinning). Also, the CRSS for {1012} twinning was clearly shown to increase with decreasing alloy purity. A thorough method for determining crystal plasticity modelling parameters based on experimental data was formulated. Additionally, twinning was modelled in a physically realistic manner influenced by the present findings using the visco-plastic self-consistent (VPSC) model. In particular: the activity of twinning decreased in a natural way due to greater difficulty in its operation rather than through an enforced saturation; and hardening or softening due to changes in orientation and dynamic Hall-Petch hardening were important. The rigorous modelling procedure gave great confidence in the key experimental findings.

Page generated in 0.1709 seconds