• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 8
  • 7
  • 5
  • 4
  • 1
  • 1
  • Tagged with
  • 26
  • 26
  • 8
  • 8
  • 7
  • 7
  • 5
  • 5
  • 5
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
21

Analýza mechanického chování synchronního generátoru / Analysis of mechanical behaviour of synchronous generator

Donát, Martin January 2010 (has links)
This Master’s thesis deals with analysis of mechanical behaviour of the synchronous generator and assessment of the possibility of reducing the mass of the frame of the generator. The aims of this work were: to perform the stress-strain analysis and modal analysis of the required model of the synchronous generator, to assessment influence of single part of the frame of the generator over its stiffness and design construction modification of the frame of the generator, which reduce its mass.
22

Optimalizace modálního tlumení lopatek vysokotlakých stupňů parních turbín / Optimization of Modal Damping of Blades in High Pressure Stages of Steam Turbine

Lošák, Petr January 2011 (has links)
Steam turbine rotor is a very complicated assembly, typically consists of several rotor rows. Due to design limitations and increasing demands on the efficiency of the steam turbines, it is practically impossible to avoid all of the resonant states. The significant vibrations can occur, for example, due to passing resonance state during turbine start up or run out. In the worst case the turbine operates state is close to the resonance state of the rotor row. This leads to the significant oscillation of the bladed disk, and may results in the blade (or blade to disk joints) high cycle fatigue. These parts are highly loaded components and any cracks are unacceptable. Therefore it is absolutely necessary to damp vibration by using, for example, passive damping elements. The damping element analyzed in this thesis is a strap with an isosceles trapezoidal cross section, which is placed in the circumferential dovetail groove in the blade segmental shrouding. The sliding between the contact surfaces leads to the dissipation of energy which causes decreasing of undesirable vibrations. The main aim is to design the optimal dimensions of the strap cross-section with a view to the most effective damping of vibration for a particular turbine operating state. Considered bladed disk has 54 blades which are coupled in 18 packets by segmental shrouding. The damping element is paced in circumferential dovetail groove created in the shrouding. This type of damping element is suitable especially for damping vibrations in the axial direction and only with the mode shape with the nodal diameters. The modal properties of the bladed disk are influenced by the sliding distance. Since the friction force depends on centrifugal force acting on the damping element and on the angle of the side walls of the strap and groove, the sliding distance can be influenced by the damping element dimensions. During the optimization process the best possible size of middle width, height and angle of damping element cross-section is searched. The strap weight, contact area size and flexural stiffness of damping element can be influenced by these parameters. Their change has also impact on the size of the contact pressure and thus on the size of relative motion as well. As stated previously, the damping efficiency is influenced by the relative motion between the damping element and shrouding. Numerical simulation in time domain is very time-consuming, especially for systems containing nonlinearities. In order to verify dynamic behavior of the computational model with the passive friction element in numerical simulations, the simplified model is created. The model is created in the ANSYS environment. The main requirement imposed on this model is to have as small number of degrees of freedom as possible, so the time needed to perform the simulation is reduced to a minimum. To satisfy this requirement the simplified model is a cantilever beam with rectangular cross section. The dovetail groove is created in this model in longitudinal direction. In this groove is damping element. In addition to damping element dimensions optimization, the influence of each design variable on model dynamic behavior is studied. The results are verified experimentally. Experiment also shows other interesting results that confirm the damping element influence on the modal characteristics. The gained knowledge is used to optimize the dimensions of the damping element in the model of the bladed disk.
23

Návrh algoritmu výpočtu rotoru elektrického stroje s ohledem na napěťově deformační poměry a kritické otáčky / Design of computational algorithm of electric machine rotor with respect to stress-strain relationships and critical speed

Pařízek, Daniel January 2019 (has links)
The Master's thesis deals with the mechanical design of electric machine rotor. Within the first two chapters of the practical part of the thesis two simplified computational models of the rotor (level 1 models) are compiled. Specifically, the model of flexible rotor mounted on rigid supports and model of rigid rotor mounted on flexible supports. The essence of these computational models lies in solvability using simple equations. Using these models can save time when constructing a pre-design of the rotor geometry. The following chapter is devoted to comparing different approaches to computational modeling of rotor using FEM. A predetermined preliminary design of a high-speed massive rotor is investigated. Computational models of different levels at stress-strain analysis and modal analysis are presented. It also includes a suggestion on how to proceed effectively in a given analysis.
24

Analýza vlivu lisovací síly plechů rotorového paketu na kritické otáčky elektromotoru / Analysis of the rotor packet prestress on the rotor critical speed

Lekeš, Filip January 2020 (has links)
The presented diploma thesis deals with the modeling of the rotor packet in dynamic calculations and analysis of the influence of the packing pressing force on the critical speed of the electric motor. The thesis can be divided into three main parts. The first part discusses the current level of rotor packet modeling in dynamic calculations and also deals with analytical theories for subsequent experimental tests. The second part describes the implementation of two experiments to determine the equivalent modulus of elasticity. The first experiment is a four-point bending test and the second is an experimental modal analysis. The third part is used for comparing the results obtained from experimental tests and describes the calculation of the critical speed of the rotor package pressed on the shaft by the finite element method.
25

Effects of mill rotational speed on the batch grinding kinetics of a UG2 platinum ore

Makgoale, Dineo Mokganyetji 11 1900 (has links)
In this study, the effect of speed was investigated on the breakage rate of UG2 platinum ore in a batch mill of 5 dm3 and 175 mm internal diameter. One size fraction method was carried out to perform the experiment. Five mono-sized fractions in the range of 1.180 mm to 0.212 mm separated by √2 series interval were prepared. The fractions were milled at different grinding times (0.5, 2, 4, 15 and 30 min) and three fractions of mill critical speed were considered (20%, 30%, and 40%). The target of critical speed below 50% was due to the need of lower energy consumption in milling processes. The selection and breakage function parameters were determined and compared for fractions of critical speed. First the grinding kinetics of the ore was determined and it was found that the material breaks in non-first order manner. Thereafter, effective mean rate of breakage was determined. It was found that the rate of breakage increased with increase of mill speed and optimum speed was not reached in the range of chosen mill speed fractions. Again the rate of breakage was plotted as a function of particle size, the optimum size was 0.8 mm when milling at 30% critical speed. As for 20% and 30% optimum size was not reached. The selection function parameters estimated at 30% critical speed were 𝑎0 = 0.04 min−1 , 𝛼 = 1.36, 𝜇 = 0.9 mm, and Λ = 3. Breakage function parameters were determined and was noticed that the material UG2 platinum ore is non-normalised, i.e. Φ value was changing from 0.25 to 0.90 depending on feed size and mill speed. The parameters 𝛽 and 𝛾 were constant at 7.3 and 1.17 respectively. / College of Science, Engineering and Technology / M. Tech. (Chemical Engineering)
26

A Numerical Model to Predict Train Induced Vibrations and Dynamic Overloads

Ferrara, Riccardo 21 May 2013 (has links) (PDF)
A numerical model to predict train induced vibrations is presented. The dynamic computation considers mutual interactions in vehicle/track coupled system by means of a finite and discrete elements method. The vehicle is modeled by 7 bi-dimensional rigid elements representing: the body, the two boogies and the four wheels. The railway is discretized as finite Timoshenko beam elements. Axial deformation is assumed insignificant. The substructure is made-up of: rail-pads, sleepers, ballast, and background. Rail-pads are modeled as spring/damper couples without mass and sleepers are modeled as rigid elements. The rail-sleeper contact is assumed extended to a connection-area, rather than a single point assumption. To model this area many spring/damper couples are disposed along the length of sleepers. The ballast is modeled as blocks of mass made-up of rigid elements, connected to sleeper by spring/damper couples. To allow the transmission of vibrations in longitudinal direction too, spring/damper couples connect ballast elements horizontally.The dynamic interaction between the wheel-sets and the rail is accomplished by using the non-linear Hertzian model with hysteresis damping. The rail defects and the case of out-of-round wheels are considered too.A modal analysis of supporting structure is done to validate the substructure model comparing it to experimental data.Comparisons between numerical results of our model, experimental data and numerical results of others literature models are done on contact-force, rail accelerations and sleepers accelerations to validate the coupled vehicle/track system.Moreover a modal analysis of the coupled vehicle/track system is done to analyze the relationship between resonance frequencies, train velocities and ballast displacements.A sensitivity analysis is done to evaluate the variables more affecting the maintenance costs. The parameters more conditioning the ballast maintenance costs are the ballast modulus and the train mass.The effects of train velocity on the ballast displacements are analyzed in relationship with substructure properties. A new formulation to evaluate the railway toll connected to ballast wear is introduced.A new interpretation of the critical velocity in the range 100-300 km/h is proposed.

Page generated in 0.0851 seconds