• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 17
  • 8
  • 5
  • 3
  • 1
  • 1
  • Tagged with
  • 37
  • 37
  • 17
  • 6
  • 6
  • 6
  • 6
  • 6
  • 6
  • 5
  • 5
  • 5
  • 4
  • 4
  • 4
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
31

Recherche multi-descripteurs dans les fonds photographiques numérisés / Multi-descriptor retrieval in digitalized photographs collections

Bhowmik, Neelanjan 07 November 2017 (has links)
La recherche d’images par contenu (CBIR) est une discipline de l’informatique qui vise à structurer automatiquement les collections d’images selon des critères visuels. Les fonctionnalités proposées couvrent notamment l’accès efficace aux images dans une grande base de données d’images ou l’identification de leur contenu par des outils de détection et de reconnaissance d’objets. Ils ont un impact sur une large gamme de domaines qui manipulent ce genre de données, telles que le multimedia, la culture, la sécurité, la santé, la recherche scientifique, etc.Indexer une image à partir de son contenu visuel nécessite d’abord de produire un résumé visuel de ce contenu pour un usage donné, qui sera l’index de cette image dans la collection. En matière de descripteurs d’images, la littérature est désormais trés riche: plusieurs familles de descripteurs existent, et dans chaque famille de nombreuses approches cohabitent. Bon nombre de descripteurs ne décrivant pas la même information et n’ayant pas les mêmes propriétés d’invariance, il peut être pertinent de les combiner de manière à mieux décrire le contenu de l’image. Cette combinaison peut être mise en oeuvre de différentes manières, selon les descripteurs considérés et le but recherché. Dans cette thése, nous nous concentrons sur la famille des descripteurs locaux, avec pour application la recherche d’images ou d’objets par l’exemple dans une collection d’images. Leurs bonnes propriétés les rendent très populaires pour la recherche, la reconnaissance et la catégorisation d'objets et de scènes. Deux directions de recherche sont étudiées:Combinaison de caractéristiques pour la recherche d’images par l’exemple: Le coeur de la thèse repose sur la proposition d’un modèle pour combiner des descripteurs de bas niveau et génériques afin d’obtenir un descripteur plus riche et adapté à un cas d’utilisation donné tout en conservant la généricité afin d’indexer différents types de contenus visuels. L’application considérée étant la recherche par l’exemple, une autre difficulté majeure est la complexité de la proposition, qui doit correspondre à des temps de récupération réduits, même avec de grands ensembles de données. Pour atteindre ces objectifs, nous proposons une approche basée sur la fusion d'index inversés, ce qui permet de mieux représenter le contenu tout en étant associé à une méthode d’accès efficace.Complémentarité des descripteurs: Nous nous concentrons sur l’évaluation de la complémentarité des descripteurs locaux existant en proposant des critères statistiques d’analyse de leur répartition spatiale dans l'image. Ce travail permet de mettre en évidence une synergie entre certaines de ces techniques lorsqu’elles sont jugées suffisamment complémentaires. Les critères spatiaux sont exploités dans un modèle de prédiction à base de régression linéaire, qui a l'avantage de permettre la sélection de combinaisons de descripteurs optimale pour la base considérée mais surtout pour chaque image de cette base. L'approche est évaluée avec le moteur de recherche multi-index, où il montre sa pertinence et met aussi en lumière le fait que la combinaison optimale de descripteurs peut varier d'une image à l'autre.En outre, nous exploitons les deux propositions précédentes pour traiter le problème de la recherche d'images inter-domaines, correspondant notamment à des vues multi-source et multi-date. Deux applications sont explorées dans cette thèse. La recherche d’images inter-domaines est appliquée aux collections photographiques culturelles numérisées d’un musée, où elle démontre son efficacité pour l’exploration et la valorisation de ces contenus à différents niveaux, depuis leur archivage jusqu’à leur exposition ou ex situ. Ensuite, nous explorons l’application de la localisation basée image entre domaines, où la pose d’une image est estimée à partir d’images géoréférencées, en retrouvant des images géolocalisées visuellement similaires à la requête / Content-Based Image Retrieval (CBIR) is a discipline of Computer Science which aims at automatically structuring image collections according to some visual criteria. The offered functionalities include the efficient access to images in a large database of images, or the identification of their content through object detection and recognition tools. They impact a large range of fields which manipulate this kind of data, such as multimedia, culture, security, health, scientific research, etc.To index an image from its visual content first requires producing a visual summary of this content for a given use, which will be the index of this image in the database. From now on, the literature on image descriptors is very rich; several families of descriptors exist and in each family, a lot of approaches live together. Many descriptors do not describe the same information and do not have the same properties. Therefore it is relevant to combine some of them to better describe the image content. The combination can be implemented differently according to the involved descriptors and to the application. In this thesis, we focus on the family of local descriptors, with application to image and object retrieval by example in a collection of images. Their nice properties make them very popular for retrieval, recognition and categorization of objects and scenes. Two directions of research are investigated:Feature combination applied to query-by-example image retrieval: the core of the thesis rests on the proposal of a model for combining low-level and generic descriptors in order to obtain a descriptor richer and adapted to a given use case while maintaining genericity in order to be able to index different types of visual contents. The considered application being query-by-example, another major difficulty is the complexity of the proposal, which has to meet with reduced retrieval times, even with large datasets. To meet these goals, we propose an approach based on the fusion of inverted indices, which allows to represent the content better while being associated with an efficient access method.Complementarity of the descriptors: We focus on the evaluation of the complementarity of existing local descriptors by proposing statistical criteria of analysis of their spatial distribution. This work allows highlighting a synergy between some of these techniques when judged sufficiently complementary. The spatial criteria are employed within a regression-based prediction model which has the advantage of selecting the suitable feature combinations globally for a dataset but most importantly for each image. The approach is evaluated within the fusion of inverted indices search engine, where it shows its relevance and also highlights that the optimal combination of features may vary from an image to another.Additionally, we exploit the previous two proposals to address the problem of cross-domain image retrieval, where the images are matched across different domains, including multi-source and multi-date contents. Two applications of cross-domain matching are explored. First, cross-domain image retrieval is applied to the digitized cultural photographic collections of a museum, where it demonstrates its effectiveness for the exploration and promotion of these contents at different levels from their archiving up to their exhibition in or ex-situ. Second, we explore the application of cross-domain image localization, where the pose of a landmark is estimated by retrieving visually similar geo-referenced images to the query images
32

Décoder les émotions à travers la musique et la voix

Paquette, Sébastien 12 1900 (has links)
L’objectif de cette thèse est de comparer les mécanismes fondamentaux liés à la perception émotionnelle vocale et musicale. Cet objectif est sustenté par de nombreux rapports et théories appuyant l'idée de substrats neuronaux communs pour le traitement des émotions vocales et musicales. Il est proposé que la musique, afin de nous faire percevoir des émotions, recrute/recycle les circuits émotionnels qui ont évolué principalement pour le traitement des vocalisations biologiquement importantes (p.ex. cris pleurs). Bien que certaines études ont relevé de grandes similarités entre ces deux timbres (voix, musique) du point de vue cérébral (traitement émotionnel) et acoustique (expressions émotionnelles), certaines différences acoustiques et neuronales spécifique à chaque timbre ont également été observées. Il est possible que les différences rapportées ne soient pas spécifiques au timbre, mais observées en raison de facteurs spécifiques aux stimuli utilisés tels que leur complexité et leur longueur. Ici, il est proposé de contourner les problèmes de comparabilité de stimulus, par l’utilisation des expressions émotionnelles les plus simples dans les deux domaines. Pour atteindre l’objectif global de la thèse, les travaux ont été réalisés en deux temps. Premièrement, une batterie de stimuli émotionnels musicaux comparables aux stimuli vocaux déjà disponibles (Voix Affectives Montréalaises) a été développée. Des stimuli (Éclats Émotionnels Musicaux) exprimant 4 émotions (joie, peur, tristesse, neutralité) performés au violon et à la clarinette ont été enregistrés et validés. Ces Éclats Émotionnels Musicaux ont obtenu un haut taux de reconnaissance (M=80.4%) et reçu des jugements d’arousal (éveil/stimulation) et de valence correspondant à l’émotion qu’il représentait. Nous avons donc pu, dans un deuxième temps, utiliser ces stimuli nouvellement validés et les Voix Affectives Montréalaises pour réaliser deux études de comparaison expérimentales. D’abord, nous avons effectué à l’aide de l’imagerie par résonnance magnétique fonctionnelle une comparaison des circuits neuronaux utilisés pour le traitement de ces deux types d’expressions émotionnelles. Indépendamment de leur nature vocale ou musicale, une activité cérébrale spécifique à l'émotion a été observée dans le cortex auditif (centrée sur le gyrus temporal supérieur) et dans les régions limbiques (gyrus parahippocampique/amygdale), alors qu'aucune activité spécifique aux stimuli vocaux ou musicaux n'a été observée. Par la suite, nous avons comparé la perception des émotions vocales et musicales sous simulation d’implant cochléaire. Cette simulation affectant grandement la perception des indices acoustiques liés aux hauteurs tonales (important pour la discrimination émotionnelle), nous a permis de déterminer quels indices acoustiques secondaires à ceux-ci sont importants pour la perception émotionnelle chez les utilisateurs d’implant cochléaire. L’examen des caractéristiques acoustiques et des jugements émotionnels a permis de déterminer que certaines caractéristiques timbrales (clarté, énergie et rugosité) communes à la voix et la musique sont utilisées pour réaliser des jugements émotionnels sous simulations d’implant cochléaire, dans les deux domaines. L’attention que nous avons portée au choix des stimuli nous a permis de mettre de l’avant les grandes similarités (acoustique, neuronales) impliquées dans la perception des émotions vocales et musicales. Cette convergence d’évidence donne un appui important à l’hypothèse de circuits neuronaux fondamentaux commun pour le traitement des émotions vocales et musicales. / The aim of this thesis is to compare the fundamental mechanisms related to vocal and musical emotion perception. This objective is supported by many reports and theories bringing forward the idea of common neural substrates for the treatment of vocal and musical emotions. It is proposed that music, in order to make us perceive emotions, recruits/recycles the emotional circuits that evolved mainly for the treatment of biologically important vocalisations (e.g. cries, screams). Although some studies have found great similarities between these two timbres (voice, music) from the cerebral (emotional treatment) and acoustic (emotional expressions) point of view, some acoustic and neural differences specific to each timbre have also been reported. It is possible that the differences described are not specific to the timbre but are observed due to factors specific to the stimuli used such as their complexity and length. Here, it is proposed to circumvent the problems of stimulus comparability by using the simplest emotional expressions in both domains. To achieve the overall objective of the thesis, the work was carried out in two stages. First, a battery of musical emotional stimuli comparable to the vocal stimuli already available (Montreal Affective Voices) was developed. Stimuli (Musical Emotional Bursts) expressing 4 emotions (happiness, fear, sadness, neutrality) performed on the violin and clarinet were recorded and validated. These Musical Emotional Bursts obtained a high recognition rate (M = 80.4%) and received arousal and valence judgments corresponding to the emotion they represented. Secondly, we were able to use these newly validated stimuli and the Montreal Affective Voices to perform two experimental comparison studies. First, functional magnetic resonance imaging was used to compare the neural circuits used to process these two types of emotional expressions. Independently of their vocal or musical nature, emotion-specific activity was observed in the auditory cortex (centered on the superior temporal gyrus) and in the limbic regions (amygdala/parahippocampal gyrus), whereas no activity specific to vocal or musical stimuli was observed. Subsequently, we compared the perception of vocal and musical emotions under cochlear implant simulation. This simulation greatly affects the perception of acoustic indices related to pitch (important for emotional discrimination), allowing us to determine which acoustic indices secondary to these are important for emotional perception in cochlear implant users. Examination of acoustic characteristics and emotional judgments determined that certain timbral characteristics (brightness, energy, and roughness) common to voice and music are used to make emotional judgments in both domains, under cochlear implant simulations. The specific attention to our stimuli selection has allowed us to put forward the similarities (acoustic, neuronal) involved in the perception of vocal and musical emotions. This convergence of evidence provides important support to the hypothesis of a fundamental common neural circuit for the processing of vocal and musical emotions.
33

Music in Motion: A Metaphoric Mapping of Forces in Piano Concertos by Mozart and Schumann

Roy, Adam January 2015 (has links)
In this thesis, I demonstrate the dynamic way in which musical processes can be described as metaphors. Using Steve Larson’s three main metaphors (gravity, inertia, and magnetism) as a starting point, I propose additional metaphors (friction, repulsion, momentum, wave, orbit, and oscillation) to analyze the first movements of Mozart’s Piano Concerto No. 20 in D minor, K 466 and Schumann’s Piano Concerto in A minor, op. 54. These metaphors provide a means to discuss points of convergence and divergence between the Classical style and the early-Romantic style. Additionally, most theorists of the energeticist tradition only discuss motion through prose; I introduce a way to represent these metaphors as musical examples. By focusing on the listener’s experience through musical motion, the model proposed in this thesis is useful, not only for the theorist, but for all who wish to communicate ideas about music in a dynamic way.
34

Zero-Shot Cross-Lingual Domain Adaptation for Neural Machine Translation : Exploring The Interplay Between Language And Domain Transferability

Shahnazaryan, Lia January 2024 (has links)
Within the field of neural machine translation (NMT), transfer learning and domain adaptation techniques have emerged as central solutions to overcome the data scarcity challenges faced by low-resource languages and specialized domains. This thesis explores the potential of zero-shot cross-lingual domain adaptation, which integrates principles of transfer learning across languages and domain adaptation. By fine-tuning a multilingual pre-trained NMT model on domain-specific data from one language pair, the aim is to capture domain-specific knowledge and transfer it to target languages within the same domain, enabling effective zero-shot cross-lingual domain transfer. This study conducts a series of comprehensive experiments across both specialized and mixed domains to explore the feasibility and influencing factors of zero-shot cross-lingual domain adaptation. The results indicate that fine-tuned models generally outperform the pre-trained baseline in specialized domains and most target languages. However, the extent of improvement depends on the linguistic complexity of the domain, as well as the transferability potential driven by the linguistic similarity between the pivot and target languages. Additionally, the study examines zero-shot cross-lingual cross-domain transfer, where models fine-tuned on mixed domains are evaluated on specialized domains. The results reveal that while cross-domain transfer is feasible, its effectiveness depends on the characteristics of the pivot and target domains, with domains exhibiting more consistent language being more responsive to cross-domain transfer. By examining the interplay between language-specific and domain-specific factors, the research explores the dynamics influencing zero-shot cross-lingual domain adaptation, highlighting the significant role played by both linguistic relatedness and domain characteristics in determining the transferability potential.
35

A Cross-domain and Cross-language Knowledge-based Representation of Text and its Meaning

Franco Salvador, Marc 03 July 2017 (has links)
Tesis por compendio / Natural Language Processing (NLP) is a field of computer science, artificial intelligence, and computational linguistics concerned with the interactions between computers and human languages. One of its most challenging aspects involves enabling computers to derive meaning from human natural language. To do so, several meaning or context representations have been proposed with competitive performance. However, these representations still have room for improvement when working in a cross-domain or cross-language scenario. In this thesis we study the use of knowledge graphs as a cross-domain and cross-language representation of text and its meaning. A knowledge graph is a graph that expands and relates the original concepts belonging to a set of words. We obtain its characteristics using a wide-coverage multilingual semantic network as knowledge base. This allows to have a language coverage of hundreds of languages and millions human-general and -specific concepts. As starting point of our research we employ knowledge graph-based features - along with other traditional ones and meta-learning - for the NLP task of single- and cross-domain polarity classification. The analysis and conclusions of that work provide evidence that knowledge graphs capture meaning in a domain-independent way. The next part of our research takes advantage of the multilingual semantic network and focuses on cross-language Information Retrieval (IR) tasks. First, we propose a fully knowledge graph-based model of similarity analysis for cross-language plagiarism detection. Next, we improve that model to cover out-of-vocabulary words and verbal tenses and apply it to cross-language document retrieval, categorisation, and plagiarism detection. Finally, we study the use of knowledge graphs for the NLP tasks of community questions answering, native language identification, and language variety identification. The contributions of this thesis manifest the potential of knowledge graphs as a cross-domain and cross-language representation of text and its meaning for NLP and IR tasks. These contributions have been published in several international conferences and journals. / El Procesamiento del Lenguaje Natural (PLN) es un campo de la informática, la inteligencia artificial y la lingüística computacional centrado en las interacciones entre las máquinas y el lenguaje de los humanos. Uno de sus mayores desafíos implica capacitar a las máquinas para inferir el significado del lenguaje natural humano. Con este propósito, diversas representaciones del significado y el contexto han sido propuestas obteniendo un rendimiento competitivo. Sin embargo, estas representaciones todavía tienen un margen de mejora en escenarios transdominios y translingües. En esta tesis estudiamos el uso de grafos de conocimiento como una representación transdominio y translingüe del texto y su significado. Un grafo de conocimiento es un grafo que expande y relaciona los conceptos originales pertenecientes a un conjunto de palabras. Sus propiedades se consiguen gracias al uso como base de conocimiento de una red semántica multilingüe de amplia cobertura. Esto permite tener una cobertura de cientos de lenguajes y millones de conceptos generales y específicos del ser humano. Como punto de partida de nuestra investigación empleamos características basadas en grafos de conocimiento - junto con otras tradicionales y meta-aprendizaje - para la tarea de PLN de clasificación de la polaridad mono- y transdominio. El análisis y conclusiones de ese trabajo muestra evidencias de que los grafos de conocimiento capturan el significado de una forma independiente del dominio. La siguiente parte de nuestra investigación aprovecha la capacidad de la red semántica multilingüe y se centra en tareas de Recuperación de Información (RI). Primero proponemos un modelo de análisis de similitud completamente basado en grafos de conocimiento para detección de plagio translingüe. A continuación, mejoramos ese modelo para cubrir palabras fuera de vocabulario y tiempos verbales, y lo aplicamos a las tareas translingües de recuperación de documentos, clasificación, y detección de plagio. Por último, estudiamos el uso de grafos de conocimiento para las tareas de PLN de respuesta de preguntas en comunidades, identificación del lenguaje nativo, y identificación de la variedad del lenguaje. Las contribuciones de esta tesis ponen de manifiesto el potencial de los grafos de conocimiento como representación transdominio y translingüe del texto y su significado en tareas de PLN y RI. Estas contribuciones han sido publicadas en diversas revistas y conferencias internacionales. / El Processament del Llenguatge Natural (PLN) és un camp de la informàtica, la intel·ligència artificial i la lingüística computacional centrat en les interaccions entre les màquines i el llenguatge dels humans. Un dels seus majors reptes implica capacitar les màquines per inferir el significat del llenguatge natural humà. Amb aquest propòsit, diverses representacions del significat i el context han estat proposades obtenint un rendiment competitiu. No obstant això, aquestes representacions encara tenen un marge de millora en escenaris trans-dominis i trans-llenguatges. En aquesta tesi estudiem l'ús de grafs de coneixement com una representació trans-domini i trans-llenguatge del text i el seu significat. Un graf de coneixement és un graf que expandeix i relaciona els conceptes originals pertanyents a un conjunt de paraules. Les seves propietats s'aconsegueixen gràcies a l'ús com a base de coneixement d'una xarxa semàntica multilingüe d'àmplia cobertura. Això permet tenir una cobertura de centenars de llenguatges i milions de conceptes generals i específics de l'ésser humà. Com a punt de partida de la nostra investigació emprem característiques basades en grafs de coneixement - juntament amb altres tradicionals i meta-aprenentatge - per a la tasca de PLN de classificació de la polaritat mono- i trans-domini. L'anàlisi i conclusions d'aquest treball mostra evidències que els grafs de coneixement capturen el significat d'una forma independent del domini. La següent part de la nostra investigació aprofita la capacitat\hyphenation{ca-pa-ci-tat} de la xarxa semàntica multilingüe i se centra en tasques de recuperació d'informació (RI). Primer proposem un model d'anàlisi de similitud completament basat en grafs de coneixement per a detecció de plagi trans-llenguatge. A continuació, vam millorar aquest model per cobrir paraules fora de vocabulari i temps verbals, i ho apliquem a les tasques trans-llenguatges de recuperació de documents, classificació, i detecció de plagi. Finalment, estudiem l'ús de grafs de coneixement per a les tasques de PLN de resposta de preguntes en comunitats, identificació del llenguatge natiu, i identificació de la varietat del llenguatge. Les contribucions d'aquesta tesi posen de manifest el potencial dels grafs de coneixement com a representació trans-domini i trans-llenguatge del text i el seu significat en tasques de PLN i RI. Aquestes contribucions han estat publicades en diverses revistes i conferències internacionals. / Franco Salvador, M. (2017). A Cross-domain and Cross-language Knowledge-based Representation of Text and its Meaning [Tesis doctoral]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/84285 / Compendio
36

The Struggle Against Misinformation: Evaluating the Performance of Basic vs. Complex Machine Learning Models on Manipulated Data

Valladares Parker, Diego Gabriel January 2024 (has links)
This study investigates the application of machine learning (ML) techniques in detecting fake news, addressing the rapid spread of misinformation across social media platforms. Given the time-consuming nature of manual fact-checking, this research compares the robustness of basic machine learning models, such as Multinominal Naive Bayes classifiers, with complex models like Distil-BERT in identifying fake news. Utilizing datasets including LIAR, ISOT, and GM, this study will evaluate these models based on standard classification metrics both in single domain and cross-domain scenarios, especially when processing linguistically manipulated data. Results indicate that while complex models like Distil-BERT perform better in single-domain classifications, the Baseline models show competitive performance in cross-domain and on the manipulated dataset. However both models struggle with the manipulated dataset, highlighting a critical area for improvement in fake news detection algorithms and methods. In conclusion, the findings suggest that while both basic and complex models have their strength in certain settings, significant advancements are needed to improve against linguistic manipulations, ensuring reliable detection of fake news across varied contexts before consideration of public availability of automated classification.
37

All Negative on the Western Front: Analyzing the Sentiment of the Russian News Coverage of Sweden with Generic and Domain-Specific Multinomial Naive Bayes and Support Vector Machines Classifiers / På västfronten intet gott: attitydanalys av den ryska nyhetsrapporteringen om Sverige med generiska och domänspecifika Multinomial Naive Bayes- och Support Vector Machines-klassificerare

Michel, David January 2021 (has links)
This thesis explores to what extent Multinomial Naive Bayes (MNB) and Support Vector Machines (SVM) classifiers can be used to determine the polarity of news, specifically the news coverage of Sweden by the Russian state-funded news outlets RT and Sputnik. Three experiments are conducted.  In the first experiment, an MNB and an SVM classifier are trained with the Large Movie Review Dataset (Maas et al., 2011) with a varying number of samples to determine how training data size affects classifier performance.  In the second experiment, the classifiers are trained with 300 positive, negative, and neutral news articles (Agarwal et al., 2019) and tested on 95 RT and Sputnik news articles about Sweden (Bengtsson, 2019) to determine if the domain specificity of the training data outweighs its limited size.  In the third experiment, the movie-trained classifiers are put up against the domain-specific classifiers to determine if well-trained classifiers from another domain perform better than relatively untrained, domain-specific classifiers.  Four different types of feature sets (unigrams, unigrams without stop words removal, bigrams, trigrams) were used in the experiments. Some of the model parameters (TF-IDF vs. feature count and SVM’s C parameter) were optimized with 10-fold cross-validation.  Other than the superior performance of SVM, the results highlight the need for comprehensive and domain-specific training data when conducting machine learning tasks, as well as the benefits of feature engineering, and to a limited extent, the removal of stop words. Interestingly, the classifiers performed the best on the negative news articles, which made up most of the test set (and possibly of Russian news coverage of Sweden in general).

Page generated in 0.039 seconds