• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Fail Operational Controls for an Independent Metering Valve

Rannow, Michael 03 May 2016 (has links) (PDF)
As intelligent hydraulic systems with embedded sensors become more ubiquitous, the real or perceived reliability challenge associated with sensors must be addressed to encourage their adoption. In this paper, a fault-tolerant control strategy for an intelligent independent metering valve that allows continued operation if a sensor fails is described. The twin-spool valve example utilizes position sensors to stabilize the spool positions and eliminate hysteresis, and pressure sensors to provide digital pressure compensation, electronic load sensing, and other features. An independent metering valve has redundancy provided by four sensors working together to control the flow into and out of a single actuator. Although two sensors are needed to control the flow through a spool, the controller can be reconfigured to ensure the flow is always controlled on the spool with both sensors working. To accomplish this, the concept of cross-port pressure control is introduced that uses the faulty side of the valve to maintain constant pressure on the non-faulty side. By maintaining a constant pressure, the flow in and out of the actuator are balanced. Experimental results on the boom of a backhoe demonstrate the operation of the fault tolerant control strategy.
2

Fail Operational Controls for an Independent Metering Valve

Rannow, Michael January 2016 (has links)
As intelligent hydraulic systems with embedded sensors become more ubiquitous, the real or perceived reliability challenge associated with sensors must be addressed to encourage their adoption. In this paper, a fault-tolerant control strategy for an intelligent independent metering valve that allows continued operation if a sensor fails is described. The twin-spool valve example utilizes position sensors to stabilize the spool positions and eliminate hysteresis, and pressure sensors to provide digital pressure compensation, electronic load sensing, and other features. An independent metering valve has redundancy provided by four sensors working together to control the flow into and out of a single actuator. Although two sensors are needed to control the flow through a spool, the controller can be reconfigured to ensure the flow is always controlled on the spool with both sensors working. To accomplish this, the concept of cross-port pressure control is introduced that uses the faulty side of the valve to maintain constant pressure on the non-faulty side. By maintaining a constant pressure, the flow in and out of the actuator are balanced. Experimental results on the boom of a backhoe demonstrate the operation of the fault tolerant control strategy.

Page generated in 0.0821 seconds