• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Application of Quantum Mechanics to Fundamental Interactions in Chemical Physics: Studies of Atom-Molecule and Ion-Molecule Interactions Under Single-Collision Conditions: Crossed Molecular Beams; Single-Crystal Mössbauer Spectroscopy: Microscopic Tensor Properties of ⁵⁷Fe Sites in Inorganic Ferrous High-Spin Compounds

Bull, James January 2010 (has links)
As part of this project and in preparation for future experimental studies of gas-phase ion-molecule reactions, extensive modification and characterization of the crossed molecular beam machine in the Department of Chemistry, University of Canterbury has been carried out. This instrument has been configured and some preliminary testing completed to enable the future study of gas-phase ion-molecule collisions of H⁺₃ and Y⁻ (Y = F, Cl, Br) with dipole-oriented CZ₃X (Z = H, F and X = F, Cl, Br). Theoretical calculations (ab initio and density functional theory) are reported on previously experimentally characterized Na + CH₃NO₂, Na + CH₃NC, and K + CH₃NC systems, and several other systems of relevance. All gas-phase experimental and theoretical studies have the common theme of studying collision orientation dependence of reaction under singlecollision conditions. Experimental measurements, theoretical simulations and calculations are also reported on some selected ferrous (Fe²⁺) high-spin (S=2) crystals, in an attempt to resolve microscopic contributions of two fundamental macroscopic tensor properties: the electric-field gradient (efg); and the mean square displacement (msd) in the case when more than one symmetry related site of low local point-group symmetry contributes to the same quadrupole doublet. These determinations have been made using the nuclear spectroscopic technique of Mössbauer spectroscopy, and complemented with X-ray crystallographic measurements.

Page generated in 0.052 seconds