• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Klasifikace vysokofrekvenčních oscilací v intrakraniálním EEG / Classification of high frequency oscillations in intracranial EEG

Kozlovská, Magda January 2019 (has links)
This Master’s thesis deals with investigation of high-frequency oscillations in intracranial electroencephalography in patients with pharmacoresistant epilepsy. It describes individual types of oscillations with respect to their frequency definition, examines their physiological differences and occurrence. In addition to conventional high-frequency oscillations (up to about 600 Hz), it also focuses on oscillations with a frequency component above 1kHz. According to recent studies, these oscillations could have higherspecificity for the determination of pathological tissue in the epileptic brain. The data for this work was obtained by manual labeling and categorization of approximately 1500 sections of the stereoencephalographic record signals of patients undergoing surgical removal of the epileptic foci and subsequently monitored for success in the operation. Differences between individual groups of oscillations and resected or unresected tissues are investigated in this work by methods using calculations of entropy signals or cross frequency coupling. The most significant results were achieved for the classification group (FR + vFR) vs. uFR, methods frequency-amplitude coupling and sample entropy 1. When categorizing according to information about channel resection, the Shannon entropy is the most successful classification parameter.

Page generated in 0.0619 seconds