1 |
Ciclos limite em sistemas de Filippov no plano / Limit cycles in planar Filippov systemAppis, Raul Felipe 02 March 2018 (has links)
Submitted by Raul Felipe Appis (raul_appis_2010@hotmail.com) on 2018-03-12T17:34:28Z
No. of bitstreams: 1
textodissertacaoRAUL.pdf: 1347871 bytes, checksum: fed2ed8a808775f7df369369cac75556 (MD5) / Approved for entry into archive by Elza Mitiko Sato null (elzasato@ibilce.unesp.br) on 2018-03-13T18:24:11Z (GMT) No. of bitstreams: 1
appis_rf_me_sjrp.pdf: 1347871 bytes, checksum: fed2ed8a808775f7df369369cac75556 (MD5) / Made available in DSpace on 2018-03-13T18:24:11Z (GMT). No. of bitstreams: 1
appis_rf_me_sjrp.pdf: 1347871 bytes, checksum: fed2ed8a808775f7df369369cac75556 (MD5)
Previous issue date: 2018-03-02 / Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP) / Neste trabalho, nosso principal objetivo é estudar a existência e estabilidade de ciclos limite de costura em sistemas lineares planares de Filippov descontínuos obtidos pela agregação de dois sistemas lineares planares do tipo foco, e tendo apenas um ponto de equilíbrio. Ao usar uma forma normal adequada com cinco parâmetros, é realizado um estudo completo de algumas aplicações de Poincaré. São encontradas diferentes bifurcações que são responsáveis pelo aparecimento de ciclos limite de costura e regiões abertas no espaço de parâmetros com nenhum, um, dois e três ciclos limite de costura. / In this work our main aim is to study the existence and stability of crossing limit cycles in planar linear systems of discontinuous Filippov obtained by the aggregation of two planar linear systems of focus type, and having only one equilibrium point is considered. By using an adequate normal form with five parameters, a thorough study of some Poincar´e maps is performed. Different bifurcations which are responsible for the appearance of crossing limit cycles are detected and open regions in the parameters space with none, one, two and three crossing limit cycles are found. / 2015/24803-0
|
Page generated in 0.0769 seconds