• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 5
  • Tagged with
  • 5
  • 5
  • 4
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Visual Analysis of Extremely Dense Crowded Scenes

Idrees, Haroon 01 January 2014 (has links)
Visual analysis of dense crowds is particularly challenging due to large number of individuals, occlusions, clutter, and fewer pixels per person which rarely occur in ordinary surveillance scenarios. This dissertation aims to address these challenges in images and videos of extremely dense crowds containing hundreds to thousands of humans. The goal is to tackle the fundamental problems of counting, detecting and tracking people in such images and videos using visual and contextual cues that are automatically derived from the crowded scenes. For counting in an image of extremely dense crowd, we propose to leverage multiple sources of information to compute an estimate of the number of individuals present in the image. Our approach relies on sources such as low confidence head detections, repetition of texture elements (using SIFT), and frequency-domain analysis to estimate counts, along with confidence associated with observing individuals, in an image region. Furthermore, we employ a global consistency constraint on counts using Markov Random Field which caters for disparity in counts in local neighborhoods and across scales. We tested this approach on crowd images with the head counts ranging from 94 to 4543 and obtained encouraging results. Through this approach, we are able to count people in images of high-density crowds unlike previous methods which are only applicable to videos of low to medium density crowded scenes. However, the counting procedure just outputs a single number for a large patch or an entire image. With just the counts, it becomes difficult to measure the counting error for a query image with unknown number of people. For this, we propose to localize humans by finding repetitive patterns in the crowd image. Starting with detections from an underlying head detector, we correlate them within the image after their selection through several criteria: in a pre-defined grid, locally, or at multiple scales by automatically finding the patches that are most representative of recurring patterns in the crowd image. Finally, the set of generated hypotheses is selected using binary integer quadratic programming with Special Ordered Set (SOS) Type 1 constraints. Human Detection is another important problem in the analysis of crowded scenes where the goal is to place a bounding box on visible parts of individuals. Primarily applicable to images depicting medium to high density crowds containing several hundred humans, it is a crucial pre-requisite for many other visual tasks, such as tracking, action recognition or detection of anomalous behaviors, exhibited by individuals in a dense crowd. For detecting humans, we explore context in dense crowds in the form of locally-consistent scale prior which captures the similarity in scale in local neighborhoods with smooth variation over the image. Using the scale and confidence of detections obtained from an underlying human detector, we infer scale and confidence priors using Markov Random Field. In an iterative mechanism, the confidences of detections are modified to reflect consistency with the inferred priors, and the priors are updated based on the new detections. The final set of detections obtained are then reasoned for occlusion using Binary Integer Programming where overlaps and relations between parts of individuals are encoded as linear constraints. Both human detection and occlusion reasoning in this approach are solved with local neighbor-dependent constraints, thereby respecting the inter-dependence between individuals characteristic to dense crowd analysis. In addition, we propose a mechanism to detect different combinations of body parts without requiring annotations for individual combinations. Once human detection and localization is performed, we then use it for tracking people in dense crowds. Similar to the use of context as scale prior for human detection, we exploit it in the form of motion concurrence for tracking individuals in dense crowds. The proposed method for tracking provides an alternative and complementary approach to methods that require modeling of crowd flow. Simultaneously, it is less likely to fail in the case of dynamic crowd flows and anomalies by minimally relying on previous frames. The approach begins with the automatic identification of prominent individuals from the crowd that are easy to track. Then, we use Neighborhood Motion Concurrence to model the behavior of individuals in a dense crowd, this predicts the position of an individual based on the motion of its neighbors. When the individual moves with the crowd flow, we use Neighborhood Motion Concurrence to predict motion while leveraging five-frame instantaneous flow in case of dynamically changing flow and anomalies. All these aspects are then embedded in a framework which imposes hierarchy on the order in which positions of individuals are updated. The results are reported on eight sequences of medium to high density crowds and our approach performs on par with existing approaches without learning or modeling patterns of crowd flow. We experimentally demonstrate the efficacy and reliability of our algorithms by quantifying the performance of counting, localization, as well as human detection and tracking on new and challenging datasets containing hundreds to thousands of humans in a given scene.
2

Panic Detection in Human Crowds using Sparse Coding

Kumar, Abhishek 21 August 2012 (has links)
Recently, the surveillance of human activities has drawn a lot of attention from the research community and the camera based surveillance is being tried with the aid of computers. Cameras are being used extensively for surveilling human activities; however, placing cameras and transmitting visual data is not the end of a surveillance system. Surveillance needs to detect abnormal or unwanted activities. Such abnormal activities are very infrequent as compared to regular activities. At present, surveillance is done manually, where the job of operators is to watch a set of surveillance video screens to discover an abnormal event. This is expensive and prone to error. The limitation of these surveillance systems can be effectively removed if an automated anomaly detection system is designed. With powerful computers, computer vision is being seen as a panacea for surveillance. A computer vision aided anomaly detection system will enable the selection of those video frames which contain an anomaly, and only those selected frames will be used for manual verifications. A panic is a type of anomaly in a human crowd, which appears when a group of people start to move faster than the usual speed. Such situations can arise due to a fearsome activity near a crowd such as fight, robbery, riot, etc. A variety of computer vision based algorithms have been developed to detect panic in human crowds, however, most of the proposed algorithms are computationally expensive and hence too slow to be real-time. Dictionary learning is a robust tool to model a behaviour in terms of the linear combination of dictionary elements. A few panic detection algorithms have shown high accuracy using the dictionary learning method; however, the dictionary learning approach is computationally expensive. Orthogonal matching pursuit (OMP) is an inexpensive way to model a behaviour using dictionary elements and in this research OMP is used to design a panic detection algorithm. The proposed algorithm has been tested on two datasets and results are found to be comparable to state-of-the-art algorithms.
3

Panic Detection in Human Crowds using Sparse Coding

Kumar, Abhishek 21 August 2012 (has links)
Recently, the surveillance of human activities has drawn a lot of attention from the research community and the camera based surveillance is being tried with the aid of computers. Cameras are being used extensively for surveilling human activities; however, placing cameras and transmitting visual data is not the end of a surveillance system. Surveillance needs to detect abnormal or unwanted activities. Such abnormal activities are very infrequent as compared to regular activities. At present, surveillance is done manually, where the job of operators is to watch a set of surveillance video screens to discover an abnormal event. This is expensive and prone to error. The limitation of these surveillance systems can be effectively removed if an automated anomaly detection system is designed. With powerful computers, computer vision is being seen as a panacea for surveillance. A computer vision aided anomaly detection system will enable the selection of those video frames which contain an anomaly, and only those selected frames will be used for manual verifications. A panic is a type of anomaly in a human crowd, which appears when a group of people start to move faster than the usual speed. Such situations can arise due to a fearsome activity near a crowd such as fight, robbery, riot, etc. A variety of computer vision based algorithms have been developed to detect panic in human crowds, however, most of the proposed algorithms are computationally expensive and hence too slow to be real-time. Dictionary learning is a robust tool to model a behaviour in terms of the linear combination of dictionary elements. A few panic detection algorithms have shown high accuracy using the dictionary learning method; however, the dictionary learning approach is computationally expensive. Orthogonal matching pursuit (OMP) is an inexpensive way to model a behaviour using dictionary elements and in this research OMP is used to design a panic detection algorithm. The proposed algorithm has been tested on two datasets and results are found to be comparable to state-of-the-art algorithms.
4

Tackling pedestrian detection in large scenes with multiple views and representations / Une approche réaliste de la détection de piétons multi-vues et multi-représentations pour des scènes extérieures

Pellicanò, Nicola 21 December 2018 (has links)
La détection et le suivi de piétons sont devenus des thèmes phares en recherche en Vision Artificielle, car ils sont impliqués dans de nombreuses applications. La détection de piétons dans des foules très denses est une extension naturelle de ce domaine de recherche, et l’intérêt croissant pour ce problème est lié aux évènements de grande envergure qui sont, de nos jours, des scenarios à risque d’un point de vue de la sûreté publique. Par ailleurs, les foules très denses soulèvent des problèmes inédits pour la tâche de détection. De par le fait que les caméras ont le champ de vision le plus grand possible pour couvrir au mieux la foule les têtes sont généralement très petites et non texturées. Dans ce manuscrit nous présentons un système complet pour traiter les problèmes de détection et de suivi en présence des difficultés spécifiques à ce contexte. Ce système utilise plusieurs caméras, pour gérer les problèmes de forte occultation. Nous proposons une méthode robuste pour l’estimation de la position relative entre plusieurs caméras dans le cas des environnements requérant une surveillance. Ces environnements soulèvent des problèmes comme la grande distance entre les caméras, le fort changement de perspective, et la pénurie d’information en commun. Nous avons alors proposé d’exploiter le flot vidéo pour effectuer la calibration, avec l’objectif d’obtenir une solution globale de bonne qualité. Nous proposons aussi une méthode non supervisée pour la détection des piétons avec plusieurs caméras, qui exploite la consistance visuelle des pixels à partir des différents points de vue, ce qui nous permet d’effectuer la projection de l’ensemble des détections sur le plan du sol, et donc de passer à un suivi 3D. Dans une troisième partie, nous revenons sur la détection supervisée des piétons dans chaque caméra indépendamment en vue de l’améliorer. L’objectif est alors d’effectuer la segmentation des piétons dans la scène en partant d’une labélisation imprécise des données d’apprentissage, avec des architectures de réseaux profonds. Comme dernière contribution, nous proposons un cadre formel original pour une fusion de données efficace dans des espaces 2D. L’objectif est d’effectuer la fusion entre différents capteurs (détecteurs supervisés en chaque caméra et détecteur non supervisé en multi-vues) sur le plan du sol, qui représente notre cadre de discernement. nous avons proposé une représentation efficace des hypothèses composées qui est invariante au changement de résolution de l’espace de recherche. Avec cette représentation, nous sommes capables de définir des opérateurs de base et des règles de combinaison efficaces pour combiner les fonctions de croyance. Enfin, notre approche de fusion de données a été évaluée à la fois au niveau spatial, c’est à dire en combinant des détecteurs de nature différente, et au niveau temporel, en faisant du suivi évidentiel de piétons sur de scènes à grande échelle dans des conditions de densité variable. / Pedestrian detection and tracking have become important fields in Computer Vision research, due to their implications for many applications, e.g. surveillance, autonomous cars, robotics. Pedestrian detection in high density crowds is a natural extension of such research body. The ability to track each pedestrian independently in a dense crowd has multiple applications: study of human social behavior under high densities; detection of anomalies; large event infrastructure planning. On the other hand, high density crowds introduce novel problems to the detection task. First, clutter and occlusion problems are taken to the extreme, so that only heads are visible, and they are not easily separable from the moving background. Second, heads are usually small (they have a diameter of typically less than ten pixels) and with little or no textures. This comes out from two independent constraints, the need of one camera to have a field of view as high as possible, and the need of anonymization, i.e. the pedestrians must be not identifiable because of privacy concerns.In this work we develop a complete framework in order to handle the pedestrian detection and tracking problems under the presence of the novel difficulties that they introduce, by using multiple cameras, in order to implicitly handle the high occlusion issues.As a first contribution, we propose a robust method for camera pose estimation in surveillance environments. We handle problems as high distances between cameras, large perspective variations, and scarcity of matching information, by exploiting an entire video stream to perform the calibration, in such a way that it exhibits fast convergence to a good solution. Moreover, we are concerned not only with a global fitness of the solution, but also with reaching low local errors.As a second contribution, we propose an unsupervised multiple camera detection method which exploits the visual consistency of pixels between multiple views in order to estimate the presence of a pedestrian. After a fully automatic metric registration of the scene, one is capable of jointly estimating the presence of a pedestrian and its height, allowing for the projection of detections on a common ground plane, and thus allowing for 3D tracking, which can be much more robust with respect to image space based tracking.In the third part, we study different methods in order to perform supervised pedestrian detection on single views. Specifically, we aim to build a dense pedestrian segmentation of the scene starting from spatially imprecise labeling of data, i.e. heads centers instead of full head contours, since their extraction is unfeasible in a dense crowd. Most notably, deep architectures for semantic segmentation are studied and adapted to the problem of small head detection in cluttered environments.As last but not least contribution, we propose a novel framework in order to perform efficient information fusion in 2D spaces. The final aim is to perform multiple sensor fusion (supervised detectors on each view, and an unsupervised detector on multiple views) at ground plane level, that is, thus, our discernment frame. Since the space complexity of such discernment frame is very large, we propose an efficient compound hypothesis representation which has been shown to be invariant to the scale of the search space. Through such representation, we are capable of defining efficient basic operators and combination rules of Belief Function Theory. Furthermore, we propose a complementary graph based description of the relationships between compound hypotheses (i.e. intersections and inclusion), in order to perform efficient algorithms for, e.g. high level decision making.Finally, we demonstrate our information fusion approach both at a spatial level, i.e. between detectors of different natures, and at a temporal level, by performing evidential tracking of pedestrians on real large scale scenes in sparse and dense conditions.
5

Ensemble Methods for Pedestrian Detection in Dense Crowds / Méthodes d'ensembles pour la détection de piétons en foules denses

Vandoni, Jennifer 17 May 2019 (has links)
Cette thèse s’intéresse à la détection des piétons dans des foules très denses depuis un système mono-camera, avec comme but d’obtenir des détections localisées de toutes les personnes. Ces détections peuvent être utilisées soit pour obtenir une estimation robuste de la densité, soit pour initialiser un algorithme de suivi. Les méthodologies classiques utilisées pour la détection de piétons s’adaptent mal au cas où seulement les têtes sont visibles, de part l’absence d’arrière-plan, l’homogénéité visuelle de la foule, la petite taille des objets et la présence d’occultations très fortes. En présence de problèmes difficiles tels que notre application, les approches à base d’apprentissage supervisé sont bien adaptées. Nous considérons un système à plusieurs classifieurs (Multiple Classifier System, MCS), composé de deux ensembles différents, le premier basé sur les classifieurs SVM (SVM- ensemble) et le deuxième basé sur les CNN (CNN-ensemble), combinés dans le cadre de la Théorie des Fonctions de Croyance (TFC). L’ensemble SVM est composé de plusieurs SVM exploitant les données issues d’un descripteur différent. La TFC nous permet de prendre en compte une valeur d’imprécision supposée correspondre soit à une imprécision dans la procédure de calibration, soit à une imprécision spatiale. Cependant, le manque de données labellisées pour le cas des foules très denses nuit à la génération d’ensembles de données d’entrainement et de validation robustes. Nous avons proposé un algorithme d’apprentissage actif de type Query-by- Committee (QBC) qui permet de sélectionner automatiquement de nouveaux échantillons d’apprentissage. Cet algorithme s’appuie sur des mesures évidentielles déduites des fonctions de croyance. Pour le second ensemble, pour exploiter les avancées de l’apprentissage profond, nous avons reformulé notre problème comme une tâche de segmentation en soft labels. Une architecture entièrement convolutionelle a été conçue pour détecter les petits objets grâce à des convolutions dilatées. Nous nous sommes appuyés sur la technique du dropout pour obtenir un ensemble CNN capable d’évaluer la fiabilité sur les prédictions du réseau lors de l’inférence. Les réalisations de cet ensemble sont ensuite combinées dans le cadre de la TFC. Pour conclure, nous montrons que la sortie du MCS peut être utile aussi pour le comptage de personnes. Nous avons proposé une méthodologie d’évaluation multi-échelle, très utile pour la communauté de modélisation car elle lie incertitude (probabilité d’erreur) et imprécision sur les valeurs de densité estimées. / This study deals with pedestrian detection in high- density crowds from a mono-camera system. The detections can be then used both to obtain robust density estimation, and to initialize a tracking algorithm. One of the most difficult challenges is that usual pedestrian detection methodologies do not scale well to high-density crowds, for reasons such as absence of background, high visual homogeneity, small size of the objects, and heavy occlusions. We cast the detection problem as a Multiple Classifier System (MCS), composed by two different ensembles of classifiers, the first one based on SVM (SVM-ensemble) and the second one based on CNN (CNN-ensemble), combined relying on the Belief Function Theory (BFT) to exploit their strengths for pixel-wise classification. SVM-ensemble is composed by several SVM detectors based on different gradient, texture and orientation descriptors, able to tackle the problem from different perspectives. BFT allows us to take into account the imprecision in addition to the uncertainty value provided by each classifier, which we consider coming from possible errors in the calibration procedure and from pixel neighbor's heterogeneity in the image space. However, scarcity of labeled data for specific dense crowd contexts reflects in the impossibility to obtain robust training and validation sets. By exploiting belief functions directly derived from the classifiers' combination, we propose an evidential Query-by-Committee (QBC) active learning algorithm to automatically select the most informative training samples. On the other side, we explore deep learning techniques by casting the problem as a segmentation task with soft labels, with a fully convolutional network designed to recover small objects thanks to a tailored use of dilated convolutions. In order to obtain a pixel-wise measure of reliability about the network's predictions, we create a CNN- ensemble by means of dropout at inference time, and we combine the different obtained realizations in the context of BFT. Finally, we show that the output map given by the MCS can be employed to perform people counting. We propose an evaluation method that can be applied at every scale, providing also uncertainty bounds on the estimated density.

Page generated in 0.0639 seconds