• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • No language data
  • Tagged with
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Environmental Influences on Gas Exchange in Fertilized and Non-Fertilized Stands of Loblolly Pine

Gough, Christopher Michael 14 August 2000 (has links)
Spatial and temporal variation in foliar gas exchange on both a diurnal and seasonal scale was examined in 15-year-old fertilized and non-fertilized loblolly pine in the upper and lower thirds of crowns in stands located in the North Carolina sandhills. Photosynthesis rates between control and fertilized stands for both seasonal and diurnal measurement periods were different during only three months. Photosynthesis rates were consistently greater in the upper third of the crown compared to the lower third. Seasonal trends in both conductance and transpiration closely resembled trends found in seasonal photosynthesis. Foliar nitrogen concentrations were greater in fertilized stands for all months sampled. However, nitrogen content generally did not correlate with photosynthesis rates. Mean monthly water use efficiencies were significantly higher in fertilized stands during two months and were usually greater in upper crown foliage. Common empirical gas exchange models reveal that light and vapor pressure deficit (VPD) explain a majority of the variation observed in photosynthesis and transpiration, respectively. Conductance was not modeled since environmental variation did not adequately explain conductance patterns. Predicted light response curves reveal that upper crown foliage has higher maximum photosynthesis rates, respiration rates, light compensation points, and lower initial quantum yield compared to lower crown foliage. Models predict that foliage from fertilized stands is more sensitive to VPD and light during the growing season. Transpiration models predict highly variable responses to VPD depending on the treatment combination and season. Model R-square and predicted gas exchange values suggest that seasonal acclimation occurred. / Master of Science

Page generated in 0.064 seconds