• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • 1
  • Tagged with
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Geophysical investigation of the stone zone and loamy mantle on the Iowan surface

Matzke, Jeffrey Alan 01 December 2013 (has links)
The processes that generated the distinctive landscape of the Iowa Erosion Surface (IES) of northeastern Iowa have been debated for over a century. A number of researchers have concluded that the IES experienced a periglacial environment and was underlain by continuous permafrost during the last glacial maximum. Ubiquitous throughout the IES is a stone zone that lies 60-100cm below the surface. Several explanations for the genesis of the stone zone have been proposed, including a lag concentrate, biomantle processes, and cryogenesis. We utilized a combination of coring and trenching, ground penetrating radar and resistivity to investigate the 3D distribution of the stone zone, overlying "pedisediment" and the underlying contact with dense till across a 100m2 area on a typical IES hillslope in east-central Iowa . Our preliminary results indicate that the stone zone occurs in the basal few decimeters of pedisediment that rests uncomformably and abruptly on eroded, dense till. Ice wedge casts extend from the stone zone into the underlying till. The depth of the stone zone below the modern surface increases downslope and the stone zone dissipates and eventually is replaced by relatively thick loamy sand beneath the footslope. These relationships argue against the stone zone being of biogenic origin. The occurrence of ice wedge casts associated with the stone zone and systematic changes in the thickness and texture of the pedisediment suggest to us that stone zone on the IES was formed by a combination of cryogenic and active zone erosive processes during the full glacial period.
2

Structure et évolution du pergélisol depuis le Pléistocène Tardif, Beaver Creek, Yukon

Sliger, Michel 03 1900 (has links)
Le site routier expérimental de Beaver Creek (62º 20’ 20’’ N – 140º 50’ 10’’ O) est sis sur la moraine de Beaver Creek pré datant le Dernier Maximum Glaciaire. Dans un périmètre d’un kilomètre carré, son relief, sa végétation, son sol et sa cryostratigraphie ont été étudiés avec une perspective géosystémique, afin d’en détailler la catena et sa structure. Ensuite, la cryostratigraphie a été interprétée pour suggérer un modèle d’évolution du paysage. Enfin, les changements récents y ont été intégrés en vue d’actualiser la tendance évolutive du géosystème. Il ressort de cet ouvrage que la durabilité du pergélisol est fortement appuyée par la présence des milieux humides dans les replats. Quelques affleurements de la moraine sont toujours visibles, quoique faiblement exprimés. Ils contiennent peu de glace et leur teneur en matière organique est mince. Quant aux dépressions, elles sont peu profondes et étendues. Non seulement elles ont hérité des sédiments érodés des crêtes, mais elles ont aussi fixé une quantité importante de glace et de matière organique par le truchement d’un pergélisol syngénétique (>15 m) généré par le climat et protégé par l’écosystème. Au moins un évènement de thermo-érosion est survenu avant le dernier stade d’aggradation syngénétique (Holocène), mais il n’a été que partiel. L’actuel réchauffement climatique menace d’engager un autre épisode de dégradation à l’échelle du bassin versant. Contrairement au changement climatique, l’utilisation du territoire provoque déjà la dégradation du pergélisol, mais de manière localisée seulement. / The Beaver Creek Road Experimental Site (62º 20’ 20’’ N – 140º 50’ 10’’ O) sits on the Beaver Creek moraine. This landform was already evolving before the Last Glacial Maximum. In a single square kilometer perimeter, its topography, vegetation, soil and cryostratigraphy have been studied with a geosystemic perspective to detail its catena and related structure. Furthermore, the cryostratigraphy has been interpreted considering the literature to suggest a landscape evolution model. Recent changes at the site were integrated in the model to actualize the geosystem’s evolutive trend. This work has shown that the durability of the permafrost is strongly supported by the wetlands associated to flat lowlands. On the one hand, some moraine hillcrests are still slightly outcropping. There, the limited moisture inhibited the development of peat and intrasedimentary ice (<1 m). On the other hand, the depressions are quite flat and extended. They inherited not only of the crest’s eroded sediments, but they also fixed an important quantity of ice and organic matter (>15 m) by the mean of syngenetic permafrost aggradation driven by the climate and preserved by the ecosystem. At least one thermoerosion event occurred before the last syngenetic aggradation stage (Holocene), but was only a partial one. The ongoing global warming threatens to trigger another permafrost degradation stage on the drainage basin scale. On the field unit scale, the land use is already degrading the local ice-rich permafrost.

Page generated in 0.055 seconds