• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 3
  • Tagged with
  • 3
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Role of <i>bax</i>, <i>ibpA</i>, <i>ibpB</i> and <i>cspH</i> Genes in Protecting CFT073 (Uropathogenic <i>Escherichia coli</I>) Against Salt and Urea Stress

Beesetty, Pavani 01 May 2013 (has links)
No description available.
2

A genome editing approach to induce fetal hemoglobin expression for the treatment of β-hemoglobinopathies / Développement d’une stratégie d’édition du génome permettant d’induire l’expression de l'hémoglobine fœtale pour le traitement des hémoglobinopathies beta

Antoniani, Chiara 27 November 2017 (has links)
Les β-hémoglobinopathies (β-thalassémies et drépanocytose) sont des anémies génétiques qui touchent des milliers de nouveaux nés chaque année dans le monde. Ces maladies sont causées par des mutations affectant l'expression de l'hémoglobine chez l'adulte. Le seul traitement disponible est la transfusion sanguine à vie, associée à une chélation du fer. Pour les patients les plus touchés, la greffe de cellule souche hématopoïétique (CSH) demeure le seul traitement curatif. Néanmoins, la transplantation autologue de cellules souches génétiquement corrigées représente une alternative thérapeutique pour les patients dépourvus de donneur compatible. Certaines délétions naturelles comprenant les gènes de la β- et δ- globine dans le locus de l'hémoglobine sont corrélées à une persistance de l'expression de l'hémoglobine fœtale (HPFH) à l'âge adulte. Ainsi il a été démontré que un taux élevé d'hémoglobine fœtale (HbF) améliore l'évolution clinique de ces deux pathologies. Afin d'identifier les régions régulatrices potentielles de la γ-globine, nous avons combiné les données issues d'analyses de mutations rencontrées chez des patients HPFH avec les sites d'hybridation de facteur de transcription. Sur la base de cette analyse, en ayant recours à la technologie CRISPR/CAS9, nous avons développé un protocole permettant de générer: (i) la délétion d'un potentiel suppresseur de l'HbF situé entre les gènes des globines δ et γ, ciblé par le répresseur de l’HbF BCL11A chez les érythroblastes adultes; (ii) la plus courte délétion associée à des taux élevés d’HbF (délétion Corfu) chez les patients β-thalassemiques; (iii) une délétion de 13.6-kb rencontrée fréquemment chez les patients HPFH et incluant les gènes des globines β et δ ainsi que le potentiel suppresseur de l'HbF. Notre travail a montré que la délétion de la région génomique de 13.6-kb entraîne une forte production de HbF et une réduction concomitante de l'expression de la β-globine soit dans des lignées cellulaires érythroïdes humaines soit dans des érythroblastes primaires dérivées des cellules souches et progéniteurs hématopoïétiques (CSPH). Par ailleurs, nous avons montré que la génération de cette délétion sur des CSPHs issus de patients drépanocytaires entraîne une augmentation de la transcription de la γ-globine dans une proportion significative d'érythroblastes, conduisant à une amélioration du phénotype drépanocytaire. Enfin, nous avons exploré le mécanisme menant à la réactivation de l'expression de la γ-globine. Nous avons évalué des changements dans la conformation de la chromatine et des modifications épigénétiques dans le locus de la β-globine lors de la délétion ou de l'inversion de la région de 13.6 kb. Dans l'ensemble, cette étude contribue à la connaissance des mécanismes favorisant l'échange de l'hémoglobine fœtale à l'adulte et fournit des indices pour une approche d'édition du génome dans le traitement de la β-thalassémies et de la drépanocytose. / Β-hemoglobinopathies (β-thalassemias and sickle cell disease) are genetic anemias affecting thousands of newborns annually worldwide. β-thalassemias and sickle cell disease (SCD) are caused by mutations affecting the adult hemoglobin expression and are currently treated by red blood cell transfusion and iron chelation regiments. For patients affected by severe β-hemoglobinopathies, allogenic hematopoietic stem cell (HSCs) transplantation is the only definitive therapy. However, transplantation of autologous, genetically corrected HSCs represents an alternative therapy for patients lacking a suitable HSC donor. Naturally occurring large deletions encompassing β- and δ-globin genes in the β-globin gene cluster, defined as Hereditary Persistence of Fetal Hemoglobin (HPFH) traits, lead to increased fetal hemoglobin (HbF) expression ameliorating both thalassemic and SCD clinical phenotypes. In this study, we integrated transcription factor binding site analysis and HPFH genetic data to identify potential HbF silencers in the β-globin locus. Based on this analysis, we designed a CRISPR/Cas9 strategy disrupting: (i) a putative δγ-intergenic HbF silencer targeted by the HbF repressor BCL11A in adult erythroblasts; (ii) the shortest deletion associated with elevated HbF levels (“Corfu” deletion) in β-thalassemic patients, encompassing the putative δγ-intergenic HbF silencer; (iii) a 13.6-kb genomic region including the δ- and β-globin genes and the putative intergenic HbF silencer. Targeting the 13.6-kb region, but not the Corfu and the putative δγ-intergenic regions, caused a robust HbF re-activation and a concomitant reduction in β-globin expression in an adult erythroid cell line and in healthy donor hematopoietic stem/progenitor cells (HSPC)-derived erythroblasts. We provided a proof of principle of this potential therapeutic strategy: disruption of the 13.6-kb region in HSPCs from SCD donors favored the β-to-γ globin switching in a significant proportion of HSPC-derived erythroblasts, leading to the amelioration of the SCD cell phenotype. Finally, we dissected the mechanisms leading to HbF de-repression demonstrating changes in the chromatin conformation and epigenetic modifications within the β-globin locus upon deletion or inversion of the 13.6-kb region. Overall, this study contributes to the knowledge of the mechanisms underlying fetal to adult hemoglobin switching, and provides clues for a genome editing approach to the treatment of SCD and β-thalassemia.
3

Multiple Functions of Cables1 in Hematopoiesis / Fonctions multiples de Cables1 dans l'hématopoïèse

He, Liang 24 September 2018 (has links)
Cables1 est impliqué dans la régulation du cycle cellulaire et la survie. Par QPCR et western blot, Cables1 est fortement exprimé dans les cellules souches hématopoïétiques (CSH), les progéniteurs, les cellules de la niche médullaire et les mégakaryocytes. En utilisant un modèle de souris Cables1-/-, nous avons démontré que Cables1 est un régulateur clé de la maintenance homéostatique des CSH àl’état basal et sous stress hématopoïétique. Chez les souris jeunes dépourvues de Cables1, les progéniteurs hématopoïétiques sont hyperprolifératifs et ont un avantage compétitif de repeuplement. La surexpression lentivirale et la déplétion par shRNA de la protéine Cables1 ont respectivement entraîné une régulation positive et négative de p21, indiquant que l'effet de Cables1 sur la prolifération des progéniteurs est partiellement médiée par la régulation de p21. Avec l’âge, les souris déficientes en Cables1 présentent des anomalies du nombre de globules blancs accompagnées d'une réduction significative du compartiment CSH associée à une mobilisation accrue des progéniteurs. De plus, les souris Cables1-/-présentent une sensibilité accrue à un agent myélotoxique à l’irradiation due à des défauts dumicroenvironnement médullaire. Dans les mégacaryocytes, la diminution de Cables1 par shRNA entraîne un défaut de prolifération et unediminution du pourcentage de MK matures. De plus, un défaut de la capacité de formation de proplaquette a été observé après la diminution de Cables1. Ces effets peuvent s’expliquer par une apoptose accrue. En conclusion, Cables1 régule à la fois les progéniteurs et la mégacaryopoïèse. Cables1 donc est essentiel pour l'homéostasie des CSH et le contrôle du stress des CSH. La manipulation del’expression de Cables1 pourrait représenter une opportunité pour optimiser les schémas de chimiothérapie. / Cables1 has been described to be involved in cell cycle regulation and survival. Using QPCR and western blot, we demonstrate for the first time that Cables1 in highly expressed in hematopoietic stem cells, in niche cells and megakaryocytes. Using the Cables1-/- mouse model, we demonstrate that Cables1 is a key regulator of homeostatic HSC maintenance and under hematopoietic stress. Young mice lacking Cables1 showed hyper proliferation within the hematopoietic progenitor and stem cell (HSPC) compartment. Loss ofCables1 conferred increased competitive repopulating capacity to the HSPCs. Lentiviral mediated overexpression and shRNA mediated depletion of Cables1 protein resulted in p21 up and down regulation, respectively, indicating that the effect of Cables1 on HSPC proliferation is partially mediated through regulating p21. By 1,5 to 2 years of age, Cables1 deficient mice displayed anomalies in whiteblood cell counts accompanied by a significant a reduction in the HSC compartment coupled with increased mobilization of HPC. In addition, Cables1-/- mice displayed increased sensitivity to myelotoxic agent and irradiation. These defects are related to abnormal microenvironment. We also investigated Cables1 function during megakaryopoiesis. Down regulation of Cables1 in CD41+CD42- megakaryocytic progenitors resulted in proliferative defect and decreased percentage of mature MKs, which were accompanied by p21(cyclin dependent kinase inhibitor) and Bax (an apoptosis related gene) up-regulation. Moreover, defect of proplatelet forming capacity was observed after Cables1 knockdown, which can also be explained by elevated apoptosis induced by Bax protein. In conclusion, Cables1 regulate both HSPCs and the process of megakaryopoiesis. It represents a opportunities to optimize chemotherapy schemes.

Page generated in 0.0398 seconds