• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 3
  • 3
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Maximal Unramified Extensions of Cyclic Cubic Fields

Wong, Ka Lun 05 July 2011 (has links) (PDF)
Maximal unramified extensions of quadratic number fields have been well studied. This thesis focuses on maximal unramified extensions of cyclic cubic fields. We use the unconditional discriminant bounds of Moreno to determine cyclic cubic fields having no non-solvable unramified extensions. We also use a theorem of Roquette, developed from the method of Golod-Shafarevich, and some results by Cohen to construct cyclic cubic fields in which the unramified extension is of infinite degree.
2

Reduced Ideals and Periodic Sequences in Pure Cubic Fields

Jacobs, G. Tony 08 1900 (has links)
The “infrastructure” of quadratic fields is a body of theory developed by Dan Shanks, Richard Mollin and others, in which they relate “reduced ideals” in the rings and sub-rings of integers in quadratic fields with periodicity in continued fraction expansions of quadratic numbers. In this thesis, we develop cubic analogs for several infrastructure theorems. We work in the field K=Q(), where 3=m for some square-free integer m, not congruent to ±1, modulo 9. First, we generalize the definition of a reduced ideal so that it applies to K, or to any number field. Then we show that K has only finitely many reduced ideals, and provide an algorithm for listing them. Next, we define a sequence based on the number alpha that is periodic and corresponds to the finite set of reduced principal ideals in K. Using this rudimentary infrastructure, we are able to establish results about fundamental units and reduced ideals for some classes of pure cubic fields. We also introduce an application to Diophantine approximation, in which we present a 2-dimensional analog of the Lagrange value of a badly approximable number, and calculate some examples.
3

Periodičnost Jacobiho-Perronova algoritmu / Periodicity of Jacobi-Perron algorithm

Sgallová, Ester January 2021 (has links)
This thesis aims to study a connection between indecomposable elements in the cubic fields and the Jacobi-Perron algorithm (JPA). JPA is a multidimensional generalization of the usual continued fractions algorithm. We work in the family of Ennola's cubic fields and we examine how the indecomposable elements are related to elements originating from this algorithm and whether some of these elements generate all indecomposable elements in the fields. We formulate conjectures on how to determine which elements will generate the indecomposable elements. We also prove some necessary conditions that have to hold for elements originating from this algorithm to generate indecomposable elements. 1

Page generated in 0.0423 seconds