• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 3
  • Tagged with
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Parametric solitons due to cubic nonlinearities

Kolossovski, Kazimir, Mathematics & Statistics, Australian Defence Force Academy, UNSW January 2001 (has links)
The main subject of this thesis is solitons due to degenerate parametric four-wave mixing. Derivation of the governing equations is carried out for both spatial solitons (slab waveguide) and temporal solitons (optical fibre). Higher-order effects that are ignored in the standard paraxial approximation are discussed and estimated. Detailed analysis of conventional solitons is carried out. This includes discovery of various solitons families, linear stability analysis of fundamental and higher-order solitons, development of theory describing nonlinear dynamics of higher-order solitons. The major findings related to the stationary problem are bifurcation of a two-frequency soliton family from an asymptotic family of infinitely separated one-frequency solitons, jump bifurcation and violation of the bound state principle. Linear stability analysis shows a rich variety of internal modes of the fundamental solitons and existence of a stability window for higher-order solitons. Theory for nonlinear dynamics of higher-order solitons successfully predicts the position and size of the stability window, and various instability scenarios. Equivalence between direct asymptotic approach and invariant based approach is demonstrated. A general analytic approach for description of localised solutions that are in resonance with linear waves (quasi-solitons and embedded solitons) is given. This includes normal form theory and approximation of interacting particles. The main results are an expression for the amplitude of the radiating tail of a quasi-soliton, and a two-fold criterion for existence of embedded solitons. Influence of nonparaxiality on soliton stability is investigated. Stationary instability threshold is derived. The major results are shift and decreasing of the size of the stability window for higher-order solitons. The latter is the first demonstration of the destabilizing influence of nonparaxiality on higher-order solitons. Analysis of different aspects of solitons is based on universal approaches and methods. This includes Hamiltonian formalism, consideration of symmetry properties of the model, development of asymptotic models, construction of perturbation theory, application of general theorems etc. Thus, the results obtained can be extended beyond the particular model of degenerate four-wave mixing. All theoretical predictions are in good agreement with the results of direct numerical modeling.
2

Positive solutions for Schrödinger-Poisson type systems / Soluções positivas para sistemas do tipo Schrödinger-Poisson

Rodriguez, Edwin Gonzalo Murcia 09 June 2017 (has links)
In this thesis we study Schrödinger-Poisson systems and we look for positive solutions. Our work consists in three chapters. Chapter 1 includes some basic facts on critical point theory. In Chapter 2 we consider a fractional Schrödinger-Poisson system in the whole space R^N in presence of a positive potential and depending on a small positive parameter . We show that, for suitably small (i.e. in the \"semiclassical limit\") the number of positive solutions is estimated below by the Ljusternick-Schnirelmann category of the set of minima of the potential. Finally, in Chapter 3, we analyze a Schrödinger-Poisson system in R^3 under an asymptotically cubic nonlinearity. We prove the existence of positive, radial solutions inside a ball and in an exterior domain. / Nesta tese nós estudamos sistemas de Schrödinger-Poisson e procuramos soluções positivas. Nosso trabalho consiste em três capítulos. O Capítulo 1 contém alguns fatos básicos sobre a teoria de pontos críticos. No Capítulo 2 nós consideramos um sistema fracionário de Schrödinger-Poisson em todo o espaço R^N em presença de um potencial positivo e que depende de um pequeno parâmetro positivo . Nós mostramos que, para suficentemente pequeno (i.e. no limite semiclássico) o número de soluções positivas é estimado por abaixo pela categoria de Ljusternick-Schnirelmann dos conjuntos onde o potencial é mínimo. Finalmente, no Capítulo 3 nós analisamos um sistema Schrödinger-Poisson em R^3 sob a não linearidade assintoticamente cúbica. Mostramos a existência de soluções radiais positivas dentro de uma bola e em um domínio exterior.
3

Positive solutions for Schrödinger-Poisson type systems / Soluções positivas para sistemas do tipo Schrödinger-Poisson

Edwin Gonzalo Murcia Rodriguez 09 June 2017 (has links)
In this thesis we study Schrödinger-Poisson systems and we look for positive solutions. Our work consists in three chapters. Chapter 1 includes some basic facts on critical point theory. In Chapter 2 we consider a fractional Schrödinger-Poisson system in the whole space R^N in presence of a positive potential and depending on a small positive parameter . We show that, for suitably small (i.e. in the \"semiclassical limit\") the number of positive solutions is estimated below by the Ljusternick-Schnirelmann category of the set of minima of the potential. Finally, in Chapter 3, we analyze a Schrödinger-Poisson system in R^3 under an asymptotically cubic nonlinearity. We prove the existence of positive, radial solutions inside a ball and in an exterior domain. / Nesta tese nós estudamos sistemas de Schrödinger-Poisson e procuramos soluções positivas. Nosso trabalho consiste em três capítulos. O Capítulo 1 contém alguns fatos básicos sobre a teoria de pontos críticos. No Capítulo 2 nós consideramos um sistema fracionário de Schrödinger-Poisson em todo o espaço R^N em presença de um potencial positivo e que depende de um pequeno parâmetro positivo . Nós mostramos que, para suficentemente pequeno (i.e. no limite semiclássico) o número de soluções positivas é estimado por abaixo pela categoria de Ljusternick-Schnirelmann dos conjuntos onde o potencial é mínimo. Finalmente, no Capítulo 3 nós analisamos um sistema Schrödinger-Poisson em R^3 sob a não linearidade assintoticamente cúbica. Mostramos a existência de soluções radiais positivas dentro de uma bola e em um domínio exterior.

Page generated in 0.0615 seconds