Spelling suggestions: "subject:"ribosomes"" "subject:"dictyosomes""
1 |
Lipid membrane alteration under exposure to alpha-cyclodextrins and pH-responsive pseudopeptide polymers / Altération de membranes lipides exposées à des cyclodextrines α et à des polymères pseudopeptides sensibles au pHKluzek, Monika 10 October 2017 (has links)
Le développement de nanotransporteurs basés sur des lipides, des polymères et des nanoparticules avec des propriétés «sur mesure» pour augmenter l’efficacité de médicaments, fait l’objet de recherches intensives. Toutefois, la physico-chimie subtile des intéractions polymères-lipides and nanoparticules-lipides présente encore de larges domaines mal compris et de nombreuses questions sans réponse. Ce projet de recherche doctoral utilise des techniques de visualisation (Cryo-MET, LSCM), et de caractérisation (ITC, DSC, SAXS, SANS, QCM-D) avancées pour obtenir des informations nouvelles sur les mécanismes d’interaction entre des Cyclodextrines-α d’autre part, des polymères sensibles au pH d’autre part, et des bicouches modèle de DOPC. La forte influence de ces deux composés sur ces systèmes modèle élucide certains aspects relatifs à la toxicité vis-à-vis des membranes biologiques et suggère de nouvelles approches pour des applications pharmaceutiques. / The primary goal of nanomedicine is to improve clinical outcomes. To this end, the development of nanocarriers based on lipids, polymers and nanoparticles with tailor-made properties that enhance the in vivo potency of drugs is a subject of intense research. However, the subtle physical-chemistry of the polymer-lipid and nanoparticle-lipid interactions still present many poorly understood fields of investigation as well as unanswered questions. This doctoral research project utilizes state-of-the-art visualization (Cryo-TEM, LSCM) and characterization (ITC, DSC, SAXS, SANS, QCM-D) techniques to gain novel insights into the interaction between α-Cyclodextrins in the first hand, a pH-responsive polymer in the other hand, and model DOPC bilayers. The strong influence of both compounds on these model systems elucidate some aspects regarding biological membrane toxicity and suggests novel strategies for pharmaceutical applications.
|
2 |
Production and characterization of cationic cubosomes / Produção e caracterização de cubossomos catiônicosCastro, Raphael Dias de 08 February 2019 (has links)
Cubosomes are nanostructures formed by the self-assembly of a lipid an aqueous solution, under certain experimental circumstances. Nanoparticles have been widely used as carriers of hydrophobic drugs, acting as a drug delivery method, with the potential to solve problems related to the drug, such as low solubility and instability. Theses facts are specially related to the cubic crystalline structure of these particles, in particular their large usable hydrophobic volume. The production of cubosomes relies on the self-assembly of lipids in excess of water, aided by the presence of a polymer acting as a emulsifier. The physicochemical properties of such particles can be characterized mainly by scattering techniques, namely small angle x-ray scattering (SAXS), dynamic light scattering (DLS), conventional and cryogenic transmission electron microscopy (TEM) and ζ (zeta) potential. This project aims the investigation of cubosomes production in the absence and presence of ionic liquids functionalized with alkyl chains, in order to produce cationic nanoparticles suitable for gene therapy, as in the case of DNA transfection. Cubosomes were prepared with two different lipid/polymer/water systems: phytantriol or monoolein stabilized with Puronic F127 in excess of water or buffer. Ionic liquid [C14mim][Cl] and cationic surfactant TTAB was added to these formulations and it was verified that the final dispersions contained cationic cubosomes. Particles positively charged with sizes between 300 nm and 350 nm and cubic crystalline internal structure were obtained and characterized. / Cubossomos não nanopartículas formas pela fase de auto-associação de um lipídio em solução aquosa, sob certas condições experimentais. Nanopartículas tem sido amplamente utilizadas como carreadores de fármacos hidrofóbicos, atuado como um método de entrega controlada, como potencial de resolver problemas relacionados ao fármaco, como baixa solubilidade e instabilidade. Esses benefícios estão especialmente relacionados com a estrutura interna cristalina dessas partículas, em particular, seu grande volume hidrofóbico. A produção de cubossomos baseia-se na auto-associação de lipídios em excesso de água, auxiliada pela presença de um polímero como estabilizador. As propriedades físico-químicas dessas partículas podem ser caracterizadas principalmente por técnicas de espalhamento, nomeadamente espalhamento de raios-X a baixos ângulos (SAXS), espalhamento de luz dinâmico (DLS), microscopia eletrônica de transmissão (TEM), criogênica ou por contrastação negativa, e potencial ζ (zeta). Este projeto tem como objetivo investigar a produção de cubossomos na ausência e presença de líquidos iônicos funcionalizados com cadeias alquílicas, objetivando a produção de nanopartículas catiônicas compatíveis com uso em terapia gênica, como no caso de transfecção de DNA. Cubossomos foram preparados com dois sistemas diferentes: monoleína e phytantriol estabilizados com Pluronic F127 em excesso de água ou tampão. O líquido iônico [C14mim][Cl] e o surfactante catiônico TTAB foram adicionados a essas formulações e foi verificado que as soluções finais eram compostas por cubossomos catiônicos. Partículas carregadas positivamente com tamanhos entre 300 nm e 350 nm foram obtidas e caracterizadas.
|
3 |
Assay and array technologies for G-protein coupled receptors.Bailey, Kelly January 2009 (has links)
The overall aim of this thesis is to investigate strategies to aid in the measurement of G-protein coupled receptor (GPCR) activity for high-throughput screening and sensing applications. GPCRs are cell surface receptors which have seven membrane spanning domains. They are the largest family of membrane proteins in the human genome and are involved in a number of physiological and pathophysiological pathways. They are the most widely targeted protein family for therapeutics being the target for over 30% of the currently available prescription drugs (Jacoby et al. 2006). For this reason commercial interest and investment into compound screening using these receptors as targets is of high importance in lead drug discovery. Additionally, the extensive ligand range of the GPCR superfamily, which includes light, odorants/ volatiles, neurotransmitters and hormones, make them an attractive biological recognition element in biosensor applications. This thesis demonstrates the functional expression of the H1-histamine, M2-muscarinic and α₂ₐ-adrenergic receptors of the G-protein coupled receptor family, along with their associated G-proteins (Gα, Gβ and Gγ). Expression was achieved using the Sf9/baculovirus expression system. The G-proteins were successfully incorporated into an assay system using time-resolved fluorescence resonance energy transfer (TRFRET). TR-FRET was used in order to create a homogeneous assay format capable of monitoring GPCR activation through the movement of the G-protein subunits. Fluorescence changes in the TR-FRET assay indicated a change in distance between the Gα subunit and Gβγ dimer. The separation of the Gα subunit and the Gβγ dimer after activation resulted in a significant decrease in TR-FRET measurement. The homogeneous set-up of the TR-FRET assay could potentially be adaptable to an array based format. This thesis describes the capture of vesicles containing functional GPCRs onto a solid substrate via the specific interaction between complementary oligonucleotides. GPCR presence and function within the immobilized vesicles, was demonstrated using fluorescent ligands. Further to this, alternative lipid hosts (to the vesicles), known as cubosomes, were introduced. When tagged with an oligonucleotide, these cubosome particles were also shown to immobilize site specifically onto a complementary oligonucleotide surface. / http://proxy.library.adelaide.edu.au/login?url= http://library.adelaide.edu.au/cgi-bin/Pwebrecon.cgi?BBID=1369537 / Thesis (Ph.D.) -- University of Adelaide, School of Molecular and Biomedical Science, 2009
|
4 |
Assay and array technologies for G-protein coupled receptors.Bailey, Kelly January 2009 (has links)
The overall aim of this thesis is to investigate strategies to aid in the measurement of G-protein coupled receptor (GPCR) activity for high-throughput screening and sensing applications. GPCRs are cell surface receptors which have seven membrane spanning domains. They are the largest family of membrane proteins in the human genome and are involved in a number of physiological and pathophysiological pathways. They are the most widely targeted protein family for therapeutics being the target for over 30% of the currently available prescription drugs (Jacoby et al. 2006). For this reason commercial interest and investment into compound screening using these receptors as targets is of high importance in lead drug discovery. Additionally, the extensive ligand range of the GPCR superfamily, which includes light, odorants/ volatiles, neurotransmitters and hormones, make them an attractive biological recognition element in biosensor applications. This thesis demonstrates the functional expression of the H1-histamine, M2-muscarinic and α₂ₐ-adrenergic receptors of the G-protein coupled receptor family, along with their associated G-proteins (Gα, Gβ and Gγ). Expression was achieved using the Sf9/baculovirus expression system. The G-proteins were successfully incorporated into an assay system using time-resolved fluorescence resonance energy transfer (TRFRET). TR-FRET was used in order to create a homogeneous assay format capable of monitoring GPCR activation through the movement of the G-protein subunits. Fluorescence changes in the TR-FRET assay indicated a change in distance between the Gα subunit and Gβγ dimer. The separation of the Gα subunit and the Gβγ dimer after activation resulted in a significant decrease in TR-FRET measurement. The homogeneous set-up of the TR-FRET assay could potentially be adaptable to an array based format. This thesis describes the capture of vesicles containing functional GPCRs onto a solid substrate via the specific interaction between complementary oligonucleotides. GPCR presence and function within the immobilized vesicles, was demonstrated using fluorescent ligands. Further to this, alternative lipid hosts (to the vesicles), known as cubosomes, were introduced. When tagged with an oligonucleotide, these cubosome particles were also shown to immobilize site specifically onto a complementary oligonucleotide surface. / http://proxy.library.adelaide.edu.au/login?url= http://library.adelaide.edu.au/cgi-bin/Pwebrecon.cgi?BBID=1369537 / Thesis (Ph.D.) -- University of Adelaide, School of Molecular and Biomedical Science, 2009
|
5 |
Assay and array technologies for G-protein coupled receptors.Bailey, Kelly January 2009 (has links)
The overall aim of this thesis is to investigate strategies to aid in the measurement of G-protein coupled receptor (GPCR) activity for high-throughput screening and sensing applications. GPCRs are cell surface receptors which have seven membrane spanning domains. They are the largest family of membrane proteins in the human genome and are involved in a number of physiological and pathophysiological pathways. They are the most widely targeted protein family for therapeutics being the target for over 30% of the currently available prescription drugs (Jacoby et al. 2006). For this reason commercial interest and investment into compound screening using these receptors as targets is of high importance in lead drug discovery. Additionally, the extensive ligand range of the GPCR superfamily, which includes light, odorants/ volatiles, neurotransmitters and hormones, make them an attractive biological recognition element in biosensor applications. This thesis demonstrates the functional expression of the H1-histamine, M2-muscarinic and α₂ₐ-adrenergic receptors of the G-protein coupled receptor family, along with their associated G-proteins (Gα, Gβ and Gγ). Expression was achieved using the Sf9/baculovirus expression system. The G-proteins were successfully incorporated into an assay system using time-resolved fluorescence resonance energy transfer (TRFRET). TR-FRET was used in order to create a homogeneous assay format capable of monitoring GPCR activation through the movement of the G-protein subunits. Fluorescence changes in the TR-FRET assay indicated a change in distance between the Gα subunit and Gβγ dimer. The separation of the Gα subunit and the Gβγ dimer after activation resulted in a significant decrease in TR-FRET measurement. The homogeneous set-up of the TR-FRET assay could potentially be adaptable to an array based format. This thesis describes the capture of vesicles containing functional GPCRs onto a solid substrate via the specific interaction between complementary oligonucleotides. GPCR presence and function within the immobilized vesicles, was demonstrated using fluorescent ligands. Further to this, alternative lipid hosts (to the vesicles), known as cubosomes, were introduced. When tagged with an oligonucleotide, these cubosome particles were also shown to immobilize site specifically onto a complementary oligonucleotide surface. / http://proxy.library.adelaide.edu.au/login?url= http://library.adelaide.edu.au/cgi-bin/Pwebrecon.cgi?BBID=1369537 / Thesis (Ph.D.) -- University of Adelaide, School of Molecular and Biomedical Science, 2009
|
Page generated in 0.0545 seconds