• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 3
  • Tagged with
  • 3
  • 3
  • 3
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Potential uses of indigenous cucumis africanus and cucumis myriocarpus as root-knot nematode-resistant rootstocks in watermelon (citrullus lanatus ) husbandry

Pofu, Kgabo Martha January 2012 (has links)
Thesis (Ph.D. (Plant Protection)) --University of Limpopo, 2012 / Global withdrawal of synthetic fumigant nematicides like methyl bromide due to their eco-unfriendliness resulted in serious consequences in production of crops which do not have genotypes that are resistant to plant-parasitic nematodes. Watermelon (Citrullus lanatus) is one such crop, where infection by highly aggressive root-knot nematodes (Meloidogyne species) invariably results into as high as 50% yield loss, with occasional total crop failures. Initial screening for nematode resistance in Cucumis species indigenous to South Africa suggested the possibility of the existence of nematode resistance, with the probability of these species being compatible with Citrullus species in inter-generic grafting technology. Uses of indigenous genera in Cucurbitaceae family as nematode-resistant seedling rootstocks in watermelon production could promote the South African watermelon industry as outlined in ISO 9001 certification guidelines to have competitive advantage in lucrative watermelon export markets. The objectives of this study were to determine the: (1) host-status and host-sensitivity of C. africanus and C. myriocarpus seedlings using a series of inoculation levels of M. incognita race 2 under various conditions, (2) host-status and host-sensitivity of C. africanus and C. myriocarpus seedlings using a series of inoculation levels of M. incognita race 4 and M. javanica, including the resistance form in these plant species, at least, under selected environmental conditions, (3) host-status and host-sensitivity of C. africanus and C. myriocarpus seedlings using a series of inoculation levels of M. incognita race 2 with multi-nematode xxviii infestations in order to establish whether the observed nematode resistance was sustainable when the plant was attacked by various pests at the root system level, (4) compatibility of inter-generic grafting of Citrullus and Cucumis seedlings in order to establish the potential uses of Cucumis species in olericulture, and (5) influence of the greenhouse whitefly (Trialeurode vaporariorum) infection on resistance of C. africanus to Meloidogyne species in order to establish whether the observed nematode resistance was sustainable when the plant was attacked by pests on complimentary organs. Reliability of measured variables was ensured by using statistical levels of significance (P ≤ 0.05) and coefficient of determination (R2), with validity being ensured by conducting experiments at the same location over two seasons or conducting one experiment during one season at two different locations, viz. the University of Limpopo and the Agricultural Research Council – Institute for Industrial Crops, and/or by setting up factorial treatments. Results consistently demonstrated that C. africanus and C. myriocarpus were non-hosts to M. incognita races 2 and 4 and M. javanica, without the test nematodes inflicting any damage to plants, which in plant-parasitic nematodes is described as nematode resistance. Quadratic relationships between RF values and log10(Pi + 1) transformations, in addition to confirming the density-dependent growth patterns of plant-parasitic nematodes, also suggested that chemical compounds responsible for suppression of nematodes in the two Cucumis species were different. The two Cucumis species were resistant to M. incognita races 2 and 4 and M. javanica, regardless of the environment under which the experiments were conducted. In field studies, the xxix two Cucumis species supported the ring nematodes (Criconema mutabile) and the spiral nematodes (Helicotylenchus dihystera), without these exo-parasitic nematodes inflicting any damage to plants, which in plant-parasitic nematodes is described as tolerance. Interactions among Meloidogyne species, C. mutabile and H. dihystera were either stimulatory or inhibitory, depending on whether Meloidogyne species were in the soil or inside the roots. Mechanisms of nematode resistance in the two Cucumis species were different, with C. africanus and C. myriocarpus depicting pre-infectional and post-infectional forms of resistance, respectively, without any sign of hypersensitivity in roots. When, seeds of Citrullus species were primed in water to hasten germination. Using the developed technology, survival of grafts improved from 36% to 100%, translating to relative improvement of 178%, with nematode-resistant rootstocks retaining their nematode resistant capabilities, while watermelon scions flowered earlier, with relatively higher fruit yield, without any deleterious effect on accumulation abilities of essential nutrient elements in leaves. Resistance of C. africanus to M. javanica was invariably broken by the greenhouse whitefly infection at high population levels, possibly through loss of non-structural carbohydrates, which are essential in synthetic pathways of secondary metabolites. Cucumis africanus and C. myriocarpus contain cucurbitacin B (C32H48O8) and cucurbitacin A [cucumin (C27H40O9), leptodermin (C27H38O8)], respectively, which have high demand for carbon and energy. Consequently, the efficacy of indigenous Cucumis species as nematode-resistant rootstocks in suppression of Meloidogyne species would be dependent upon the management of the xxx greenhouse whitefly population densities. In conclusion, C. africanus and C. myriocarpus have the potential for use as nematode-resistant rootstocks in the production of watermelon cultivars ‘Congo’ and ‘Charleston Gray’ in South Africa, where nematode population densities of M. incognita races 2 and 4 and M. javanica are widely distributed and are highly injurious to watermelons. Although nematode resistance in the two Cucumis species had attributes of sustainability, populations of the greenhouse whitefly broke the resistance. Proposed future research areas included influence of cucurbitacins in fruit quality of watermelons and protocols for mass culturing the nematode-resistant Cucumis rootstocks using tissue culture technology. / the National Research Foundation,the Agricultural Research Council (ARC) and the Landbank Chair of Agriculture-University of Limpopo
2

Isolation, identification and pathogenicity of post-harvest decay-inducing pathogen (s) in Cucumis Africanus and Cucumis myriocarpus fruits

Mphahlele, Rebogile Ramaesele January 2011 (has links)
Thesis (M.Sc. (Plant Protection )) --University of Limpopo, 2011 / Crude extracts of wild watermelon (Cucumis africanus) and wild cucumber (C. myriocarpus) fruits are widely used for both medicinal and ritual purposes in South Africa. Fruits are collected fresh from the wild, but have high incidence of post-harvest decay. A study was conducted to isolate and identify the pathogen responsible for post-harvest fruit decay, followed by the pathogenicity tests. Decayed fruits were individually surface-sterilised using 0.5% NaOCl, incubated at 25ºC to allow for decay, small rotten pieces were severed and placed on solidified plates of potato dextrose agar and incubated. At harvest, seven days after incubation, isolated fungus was repeatedly cultured for 21 days for verification of diagnostic characteristics. Based on the morphological characteristics, the pathogen associated with fruit rot of both Cucumis species was identified through the assistance of an expert as Penicillium simplicissimum (Oudem) Thom. Pathogenicity results suggested that P. simplicissimum was responsible for the observed fruit decay in both species, with the higher incidence being in C. africanus, probably due to its low pH. Due to the antibiotics that P. simplicissimum releases and its reduction of medium pH, the culture retained its purity, without any contamination. In conclusion, the pathogen that induces post-harvest fruit decay in C. africanus and C. myriocarpus is P. simplicissimum, which has the ability to reduce the pH of the growing medium and also produce antibiotics. / National Research Foundation
3

Mechanism of resistance to Meloidogyne Incognita and Meloidogyne Javanica in Cucumis Africanus and Cucumis myriocarpus seedlings

Ramatsitsi, Mukondeleni Ndivhuwo January 2017 (has links)
Thesis (M.Sc. (Horticulture)) -- University of Limpopo, 2017. / Root-knot (Meloidogyne species) nematodes are economically destructive pathogens of over 3000 species, whereas others have resistance to Meloidogyne species. Wild watermelon (Cucumis africanus) and wild cucumber (Cucumis myriocarpus) are highly resistant to Meloidogyne species, particularly M. incognita and M. javanica. The two Cucumis species are used in inter-generic grafting with watermelon (Citrullus lanatus) as nematode resistant rootstocks. Also, the two Cucumis species are used in traditional medicine and in plant-parasitic nematode management as phytonematicides. The form of nematode resistance, which is essential in plant breeding, is not documented for the two Cucumis species. The objective of this study was to determine the form of nematode resistance in the two Cucumis species to M. incognita and M. javanica under greenhouse conditions. Four parallel experiments were each conducted under greenhouse conditions. Uniform six-week old Cucumis seedlings were transplanted into 250 ml polystyrene cups filled with 200 ml growing medium of steam-pasteurised fine sand. A week after transplanting, Cucumis seedlings were each infested by dispensing approximately 100 M. incognita second-stage juveniles (J2) or M. javanica J2 using a 20 ml plastic syringe by placing into 5-cm-deep furrow around the seedling stem and covered with growing medium. Treatments (periodic harvest intervals) were arranged in a randomised complete block design, replicated five times. Five seedlings from each experiment were harvested every second day, for 30 days, with stained roots being assessed for necrotic spot (suberised cells) number, giant cell number, proliferation of rootlet interference number and root gall number. Periodic harvest intervals were highly significant (P ≤ 0.01) on necrotic spot number, proliferation of rootlet interference number and root gall number in C. africanus-M. incognita relations, but were not significant for giant cell number. Treatments contributed 59, 64 and 50% in total treatment variation (TTV) of necrotic spot number, proliferation of rootlet interference number and root gall number, respectively. Harvest period had highly significant effects on necrotic spot number, giant cell number, proliferation of rootlet interference number and root gall number in C. africanus-M. javanica relations. Treatments contributed 55, 71, 63 and 59% in TTV of necrotic spot number, giant cell number, proliferation of rootlet interference number and root gall number, respectively. Periodic harvest intervals were significant (P ≤ 0.05) on giant cell number and highly significant on root gall number in C. myriocarpus-M. incognita relations. However, there were no significant treatment differences on necrotic spot number and proliferation of rootlet interference number. Treatments contributed 57 and 57% in TTV of root gall number and giant cell number, respectively. Harvest period had highly significant effects on giant cell number, proliferation of rootlet interference number and root gall number, but were not significant on necrotic spot number in C. myriocarpus-M. javanica relations. Treatments accounted for 67, 49 and 53% in TTV of giant cell number, proliferation of rootlet interference number and root gall number, respectively. In conclusion, the mechanism of resistance to M. incognita and M. javanica in both C. africanus and C. myriocarpus was post-infectional nematode resistance, which has attributes for introgression into commercial nematode-susceptible Cucumis cultivars. / Agricultural Research Council (ARC), National Research Foundation of South Africa; and the ARC-Universities Collaboration Centre for Smallholder Farmers

Page generated in 0.061 seconds