• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Time-interval based Blood Pressure Measurement Technique and System

He, Shan 19 December 2018 (has links)
Smart watches in future will have smart wristband. This work analyses properties of new developed capacitive wristband sensor that measures ballistocardiogram (BCG) from single point on the wrist. In addition, it considers applications of this sensor to monitoring heart rate variability. Another application is in estimating changes (trend) in systolic blood pressure continuously when combined with lead one electrocardiogram (ECG). BP is one of the vital signs that indicates the health condition. It is commonly measured by cuff-based monitor using either auscultatory or oscillometric method. Cuff-based BP monitor is not portable and unable to measure BP continuously which means it is difficult to attach BP monitoring function on a wearable device. Significant research is conducted in estimating BP from pulse transit time (PTT) mathematically which would enable the cuffless BP measurement. In this work, a new time reference, RJ interval, which is the time delay between ECG and BCG signal peaks was tested whether it can be used as a surrogate of PTT in cuffless BP estimation. Based on the study done on 10 healthy people, it was shown that RJ intervals can be useful in evaluating trends of systolic blood pressure.
2

Cuffless Blood Pressure Estimation Using Cardiovascular Dynamics

Samimi, Hamed 06 July 2023 (has links)
Blood pressure (BP) monitoring is an important tool for management of hypertension, which is a significant risk for cardiovascular disease and premature death. Since cuff-based BP measurement can be uncomfortable and does not provide continuous readings, several cuffless methods that are typically based on within-beat information or on the pulse transit time (PTT) have recently been investigated. This work proposes a novel cuffless BP estimation approach that mainly uses the information from cardiovascular dynamics of photoplethysmogram (PPG) waveforms. This work is divided into three parts. The first part proposes a calibration-free approach that uses dynamic changes in the pulse waveform. Results from 200 patients showed that the method achieved grade B, in terms of accuracy, for diastolic blood pressure (DBP) based on the British Hypertension Society (BHS) standard and complied with the accuracy requirements of the Association for Advancement of Medical Instrumentation/European Society of Hypertension/International Organization for Standardization (AAMI/ESH/ISO) standard. The second part presents a method based on calibrated cardiovascular dynamics, achieved through a mathematical model that relates reflective PTT (R-PTT) to BP. Results from 30 patients showed a mean error (ME) of 0.58 mmHg, standard deviation of the error (SDE) of 8.13 mmHg, and a mean absolute error (MAE) of 4.93 mmHg for DBP and an ME of 2.52 mmHg, SDE of 12.28 mmHg, and an MAE of 8.82 mmHg for systolic blood pressure (SBP). The third part proposes a calibration-free method that combines morphology features and dynamic changes of the pulse waveform over short intervals. In this method a neural network was trained on 200 patients and tested on never-seen data from 25 other patients and provided an ME of -0.31 mmHg, SDE of 4.89 mmHg, and MAE of 3.32 mmHg for DBP and an ME of -4.02 mmHg, SDE of 10.40 mmHg, and MAE of 7.41 mmHg for SBP. Overall, the results show that cardiovascular dynamics may contribute useful information for cuffless estimation of BP.

Page generated in 0.1512 seconds