• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

New Insights into the Mechanisms of Crystallisation and Vitrification - a Dynamic Light Scattering Study of Colloidal Hard Spheres

Martinez, Vincent Arnaud, vincent.martinez@student.rmit.edu.au January 2009 (has links)
This thesis reports on a comprehensive experimental study of the collective dynamics of colloidal hard sphere suspensions. The main quantity measured is the coherent Intermediate Scattering Function (ISF) using a range of techniques based on Dynamic Light Scattering (DLS). The collective dynamics are measured as a function of scattering vector for volume fractions spanning from dilute samples, through the fluid phase and the metastable region, up until deep in the glass region. This work describes two major explorations: (i) the effect of volume of fraction on the q-dependency of the collective dynamics; and (ii) a study of the ageing processes in colloidal glasses. The present work is unique in the application of several advanced experimental techniques, and in the level of averaging that has been carried out, enabling a more sophisticated analysis than has previously been possible. This includes the characterization of non-Fickian processes and the determinatio n of the current-current correlation function (CCCF) in the metastable fluid, and the quantitative characterization of the ageing process in the hard sphere glass. In addition, by combining aspects of the coherent and incoherent ISFs, this work also allows the expression of the collective dynamics in terms of the single particle displacement. The results show a dynamical change at the freezing point (f), which exposes the incapacity of the system to dissipate thermal energy via diffusing momentum currents, i.e. viscous flow. The structural impediments responsible for this, associated with dynamical heterogeneities, begin at the structure factor peak, and spread to other spatial modes as the volume fraction increases. Above the glass transition (g), structural relaxation becomes arrested at all spatial modes probed, i.e. flow is arrested. It is found that, following the quench, samples above the glass volume fraction approach some final

Page generated in 0.1286 seconds