91 |
Estudo da (não-)conformidade de concretos produzidos no Brasil e sua influência na confiabilidade estrutural / A study of Brazilian concrete strength (non)compliance and its effects on structural reliabilityWagner Carvalho Santiago 20 December 2011 (has links)
Este trabalho apresenta um estudo da (não-)conformidade dos concretos estruturais produzidos no Brasil, bem como uma investigação da segurança de pilares curtos de concreto armado submetidos à compressão simples levando em conta a influência da (não-)conformidade da resistência do concreto. Esta investigação tem como base ensaios de resistência de mais de seis mil corpos-de-prova de diferentes localidades do Brasil. Estes ensaios mostram que parte significativa dos concretos atualmente produzidos no Brasil não atinge a resistência característica (fck) especificada em projeto. Como resultado, estes concretos deveriam ser considerados não-conformes e medidas de mitigação deveriam ser aplicadas. O trabalho investiga ainda o impacto da não-conformidade dos concretos produzidos no Brasil na confiabilidade de pilares curtos de concreto armado submetidos a compressão simples, quando medidas de reforço e recuperação não são adotadas. Para refletir o universo de condições de projeto, na análise de confiabilidade são consideradas quatro classes de resistência do concreto, quinze valores de razão de carregamento e três valores de taxa geométrica de armadura. O trabalho revela uma redução significativa da confiabilidade dos pilares curtos em função da não-conformidade dos concretos. Estes resultados reforçam a necessidade de um controle rigoroso no recebimento do concreto, bem como na fiscalização das medidas de mitigação no caso dos concretos não-conformes. / This paper presents a study of the strength (non-)compliance of structural concretes produced in Brazil, and an investigation of the safety of shortt reinforced concrete columns subjected to axial compression considering the influence of concrete strength (non-)compliance. The investigation is based on experimental results of over six thousand concrete samples from different parts of Brazil. Results show that a significant part of these concretes do not reach the characteristic strength specified in design. As a consequence, these concretes should be considered non-compliant, and mitigation measures should be adopted. The study also investigates the impact of concrete strength non-compliance on the reliability of short columns subject to axial compression, when mitigation measures are not adopted. In order to reflect different design conditions, four classes of concrete strength, fifteen load ratios and three reinforcement ratios are considered. The study reveals that concrete strength non-compliance significantly reduces the reliability of short columns. These results stress the necessity of a rigorous control of concrete deliveries, and the importance of a rigorous control of the mitigation actions, in case of concrete strength non-compliance.
|
92 |
Transformada imagem-floresta com funções de conexidade não suaves: pesos adaptativos, polaridade de borda e restrições de forma / Image foresting transform with non-smooth connectivity functions: adaptive weights, boundary polarity, and shape constraintsMansilla, Lucy Alsina Choque 26 February 2014 (has links)
Segmentar uma imagem consiste em particioná-la em regiões relevantes para uma dada aplicação, como para isolar um objeto de interesse no domínio de uma imagem. A segmentação é um dos problemas mais fundamentais e desafiadores em processamento de imagem e visão computacional. Ela tem desempenhado um papel importante, por exemplo, na pesquisa em neurologia, envolvendo imagens de Ressonância Magnética (RM), para fins de diagnóstico e tratamento de doenças relacionadas com alterações na anatomia do cérebro humano. Métodos de segmentação baseados na transformada imagem- floresta (IFT, Image Foresting Transform), com funções de conexidade suaves, possuem resultados ótimos, segundo o critério da otimalidade dos caminhos descrito no artigo original da IFT, e têm sido usados com sucesso em várias aplicações, como por exemplo na segmentação de imagens RM de 1.5 Tesla. No entanto, esses métodos carecem de restrições de regularização de borda, podendo gerar segmentações com fronteiras muito irregulares e indesejadas. Eles também não distinguem bem entre bordas similares com orientações opostas, e possuem alta sensibilidade à estimativa dos pesos das arestas do grafo, gerando problemas em imagens com efeitos de inomogeneidade. Nesse trabalho são propostas extensões da IFT, do ponto de vista teórico e experimental, através do uso de funções de conexidade não suaves, para a segmentação interativa de imagens por região. A otimalidade dos novos métodos é suportada pela maximização de energias de corte em grafo, ou como o fruto de uma sequência de iterações de otimização de caminhos em grafos residuais. Como resultados principais temos: O projeto de funções de conexidade mais adaptativas e flexíveis, com o uso de pesos dinâmicos, que permitem um melhor tratamento de imagens com forte inomogeneidade. O uso de grafos direcionados, de modo a explorar a polaridade de borda dos objetos na segmentação por região, e o uso de restrições de forma que ajudam a regularizar a fronteira delineada, favorecendo a segmentação de objetos com formas mais regulares. Esses avanços só foram possíveis devido ao uso de funções não suaves. Portanto, a principal contribuição desse trabalho consiste no suporte teórico para o uso de funções não suaves, até então evitadas na literatura, abrindo novas perpectivas na pesquisa de processamento de imagens usando grafos. / Segmenting an image consist in to partition it into relevant regions for a given application, as to isolate an object of interest in the domain of an image. Segmentation is one of the most fundamental and challenging problems in image processing and computer vision. It has played an important role, for example, in neurology research, involving images of Magnetic Resonance (MR), for the purposes of diagnosis and treatment of diseases related to changes in the anatomy of the human brain. Segmentation methods based on the Image Foresting Transform (IFT), with smooth connectivity functions, have optimum results, according to the criterion of path optimality described in the original IFT paper, and have been successfully used in many applications as, for example, the segmentation of MR images of 1.5 Tesla. However, these methods present a lack of boundary regularization constraints and may produce segmentations with quite irregular and undesired boundaries. They also do not distinguish well between similar boundaries with opposite orientations, and have high sensitivity to the arc-weight estimation of the graph, producing poor results in images with strong inhomogeneity effects. In this work, we propose extensions of the IFT framework, from the theoretical and experimental points of view, through the use of non-smooth connectivity functions for region-based interactive image segmentation. The optimality of the new methods is supported by the maximization of graph cut energies, or as the result of a sequence of paths optimizations in residual graphs. We have as main results: The design of more adaptive and flexible connectivity functions, with the use of dynamic weights, that allow better handling of images with strong inhomogeneity. The use of directed graphs to exploit the boundary polarity of the objects in region-based segmentation, and the use of shape constraints that help to regularize the segmentation boundary, by favoring the segmentation of objects with more regular shapes. These advances were only made possible by the use of non-smooth functions. Therefore, the main contribution of this work is the theoretical support for the usage of non-smooth functions, which were until now avoided in literature, opening new perspectives in the research of image processing using graphs.
|
93 |
Transformada imagem-floresta com funções de conexidade não suaves: pesos adaptativos, polaridade de borda e restrições de forma / Image foresting transform with non-smooth connectivity functions: adaptive weights, boundary polarity, and shape constraintsLucy Alsina Choque Mansilla 26 February 2014 (has links)
Segmentar uma imagem consiste em particioná-la em regiões relevantes para uma dada aplicação, como para isolar um objeto de interesse no domínio de uma imagem. A segmentação é um dos problemas mais fundamentais e desafiadores em processamento de imagem e visão computacional. Ela tem desempenhado um papel importante, por exemplo, na pesquisa em neurologia, envolvendo imagens de Ressonância Magnética (RM), para fins de diagnóstico e tratamento de doenças relacionadas com alterações na anatomia do cérebro humano. Métodos de segmentação baseados na transformada imagem- floresta (IFT, Image Foresting Transform), com funções de conexidade suaves, possuem resultados ótimos, segundo o critério da otimalidade dos caminhos descrito no artigo original da IFT, e têm sido usados com sucesso em várias aplicações, como por exemplo na segmentação de imagens RM de 1.5 Tesla. No entanto, esses métodos carecem de restrições de regularização de borda, podendo gerar segmentações com fronteiras muito irregulares e indesejadas. Eles também não distinguem bem entre bordas similares com orientações opostas, e possuem alta sensibilidade à estimativa dos pesos das arestas do grafo, gerando problemas em imagens com efeitos de inomogeneidade. Nesse trabalho são propostas extensões da IFT, do ponto de vista teórico e experimental, através do uso de funções de conexidade não suaves, para a segmentação interativa de imagens por região. A otimalidade dos novos métodos é suportada pela maximização de energias de corte em grafo, ou como o fruto de uma sequência de iterações de otimização de caminhos em grafos residuais. Como resultados principais temos: O projeto de funções de conexidade mais adaptativas e flexíveis, com o uso de pesos dinâmicos, que permitem um melhor tratamento de imagens com forte inomogeneidade. O uso de grafos direcionados, de modo a explorar a polaridade de borda dos objetos na segmentação por região, e o uso de restrições de forma que ajudam a regularizar a fronteira delineada, favorecendo a segmentação de objetos com formas mais regulares. Esses avanços só foram possíveis devido ao uso de funções não suaves. Portanto, a principal contribuição desse trabalho consiste no suporte teórico para o uso de funções não suaves, até então evitadas na literatura, abrindo novas perpectivas na pesquisa de processamento de imagens usando grafos. / Segmenting an image consist in to partition it into relevant regions for a given application, as to isolate an object of interest in the domain of an image. Segmentation is one of the most fundamental and challenging problems in image processing and computer vision. It has played an important role, for example, in neurology research, involving images of Magnetic Resonance (MR), for the purposes of diagnosis and treatment of diseases related to changes in the anatomy of the human brain. Segmentation methods based on the Image Foresting Transform (IFT), with smooth connectivity functions, have optimum results, according to the criterion of path optimality described in the original IFT paper, and have been successfully used in many applications as, for example, the segmentation of MR images of 1.5 Tesla. However, these methods present a lack of boundary regularization constraints and may produce segmentations with quite irregular and undesired boundaries. They also do not distinguish well between similar boundaries with opposite orientations, and have high sensitivity to the arc-weight estimation of the graph, producing poor results in images with strong inhomogeneity effects. In this work, we propose extensions of the IFT framework, from the theoretical and experimental points of view, through the use of non-smooth connectivity functions for region-based interactive image segmentation. The optimality of the new methods is supported by the maximization of graph cut energies, or as the result of a sequence of paths optimizations in residual graphs. We have as main results: The design of more adaptive and flexible connectivity functions, with the use of dynamic weights, that allow better handling of images with strong inhomogeneity. The use of directed graphs to exploit the boundary polarity of the objects in region-based segmentation, and the use of shape constraints that help to regularize the segmentation boundary, by favoring the segmentation of objects with more regular shapes. These advances were only made possible by the use of non-smooth functions. Therefore, the main contribution of this work is the theoretical support for the usage of non-smooth functions, which were until now avoided in literature, opening new perspectives in the research of image processing using graphs.
|
Page generated in 0.0599 seconds