Spelling suggestions: "subject:"cervelet based recovery""
1 |
Multiple prediction from incomplete data with the focused curvelet transformHerrmann, Felix J. January 2007 (has links)
Incomplete data represents a major challenge for a successful prediction and subsequent removal of multiples. In this paper, a new method will be represented that tackles this challenge in a two-step approach. During the first step, the recenly developed curvelet-based recovery by sparsity-promoting inversion (CRSI) is applied to the data, followed by a prediction of the primaries. During the second high-resolution step, the estimated primaries are used to improve the frequency content of the recovered data by combining the focal transform, defined in terms of the estimated primaries, with the curvelet transform. This focused curvelet transform leads to an improved recovery, which can subsequently be used as input for a second stage of multiple prediction and primary-multiple separation.
|
2 |
Surface related multiple prediction from incomplete dataHerrmann, Felix J. January 2007 (has links)
Incomplete data, unknown source-receiver signatures and free-surface reflectivity represent
challenges for a successful prediction and subsequent removal of multiples. In
this paper, a new method will be represented that tackles these challenges by combining
what we know about wavefield (de-)focussing, by weighted convolutions/correlations,
and recently developed curvelet-based recovery by sparsity-promoting inversion (CRSI).
With this combination, we are able to leverage recent insights from wave physics towards
a nonlinear formulation for the multiple-prediction problem that works for incomplete
data and without detailed knowledge on the surface effects.
|
3 |
Multiple prediction from incomplete data with the focused curvelet transformHerrmann, Felix J., Wang, Deli, Hennenfent, Gilles January 2007 (has links)
Incomplete data represents a major challenge for a successful
prediction and subsequent removal of multiples.
In this paper, a new method will be represented that
tackles this challenge in a two-step approach. During
the first step, the recenly developed curvelet-based recovery
by sparsity-promoting inversion (CRSI) is applied
to the data, followed by a prediction of the primaries.
During the second high-resolution step, the estimated
primaries are used to improve the frequency content
of the recovered data by combining the focal transform,
defined in terms of the estimated primaries, with
the curvelet transform. This focused curvelet transform
leads to an improved recovery, which can subsequently
be used as input for a second stage of multiple prediction
and primary-multiple separation.
|
Page generated in 0.0645 seconds