1 |
Modeling and Verification of Cutting Tool Temperatures in Rotary Tool Turning of Hardened SteelDessoly, Vincent 08 April 2004 (has links)
The chip formation process in machining is accompanied by heat generation. The heat generated influences both the workpiece physical properties as well as the cutting tool. High temperatures accelerate tool wear and thermal softening which are not desirable because they alter the accuracy of the machined surface and tool life.
Many studies have been done to lower the heat generated in cutting. A first approach is to use a cutting fluid but its effectiveness is limited by its ability to penetrate between the tool and the chip. A second approach is to remove the heat generated through a cooling cycle as in interrupted cutting. The idea is either to translate a wide tool to the side as it moves forward relative to the workpiece, which allows the dissipation throughout the body of the tool or to use a cutting edge in the form of a disk that rotates about its principal axis. The latter, known as a rotary tool, provides a rest period for the cutting edge, thus enabling the edge to be cooled and a continuously fresh portion of the edge to be engaged with the workpiece. The rotary tool can be either driven by an external power source or self-propelled.
This thesis focuses on the self-propelled rotary tool (SPRT) process for machining of difficult-to-machine material such as bearing steels, where tool life is of particular concern. Since the cutting temperatures are known to influence tool life significantly, the first task in this investigation involved developing a model to analyze heat transfer and temperature distribution in the cutting tool during SPRT turning of the hardened 52100 steel (58 HRC). Both rotary and equivalent fixed tool processes are compared in terms of cutting tool temperatures generated. The model is based on the moving heat source theory of conduction and employs the Finite Element Method (FEM) for its solution. The model is experimentally verified through measurement of the cutting temperature distribution using an Infra-Red imaging camera under different cutting conditions. Predicted and measured temperatures show good overall agreement when they are measured along the cutting edge and measured temperatures are up to 50??ower in rotary tool cutting than in fixed tool cutting under the same conditions.
|
2 |
Critères d’optimisation des alliages de TITane pouraméliorer leur USinabilité / Optimization criteria of titanium alloys to improvetheir machinabilityRamirez, Christophe 14 March 2017 (has links)
L’introduction massive des alliages de titane pour les pièces de structures aéronautiques a soulevé de nouvelles problématiques d’usinage. Du fait que les matériaux réfractaires présentent de faibles propriétés thermiques leur mise en forme par usinage à sec est difficile. L’objectif industriel est d’améliorer la productivité de l’usinage des alliages de titane afin d’en réduire les coûts. Des travaux concernant la coupe du Ti6Al4V α+β, du Ti54M et du Ti6Al4V traité β ont été réalisés pour mettre en évidence les différences d’usinabilité entre ces trois matériaux. Ces travaux mettent en avant une forte influence du comportement orthotrope et de l’hétérogénéité de la microstructure lamellaire, ainsi que de la taille des grains du Ti6Al4V traité β sur la mise en forme par coupe. L’étude sur l’usure des outils par diffusion montre que le principal élément de diffusion est le titane et que par conséquent aucune différence n’est observée entre les trois matériaux. Pour confirmer que la diffusion est le mode d’usure principal, des essais de perçage instrumentés avec un système de mesure de température sans fil ont été effectués. Les températures à l’arrière de l’arête de coupe atteignent des températures supérieures à 500°C pour de faibles vitesses de coupe. A cette température le phénomène de diffusion est thermiquement activé et confirme les hypothèses évoquées précédemment. Enfin, pour avoir une compréhension des différences d’usinabilité mises en évidence lors des travaux expérimentaux, une recherche sur le comportement des matériaux (Johnson-Cook) et la mise en place d’une simulation numérique ont été réalisées. Les simulations réalisées à l’aide des lois de comportement identifiées précédemment modélisent précisément l’usinage du Ti6Al4V α+β et du Ti54M. L’hétérogénéité du Ti6Al4V traité β ne permet pas une bonne modélisation de la formation du copeau. Une modélisation polycristalline serait plus adaptée. / The massive introduction of titanium alloys onto the aeronautical structures parts has raised new problems in the machining process. Because of their low thermal properties (refractory materials), they are considered as difficult to cut material. The industrial aim is therefore to improve the productivity of the titanium alloy’s machining and to reduce their costs. Some research on Ti6Al4V α + β, Ti54M and β-treated Ti6Al4V cutting was carried out to point out machinability’s differences between these three materials. This work highlights a strong influence of the orthotropic behavior and the heterogeneity of the lamellar microstructure as well as the grain size of the β-treated Ti6Al4V on cutting. The study on the tool wear diffusion shows that the main diffusion element is titanium and therefore no difference is observed between those three materials. To check that diffusion is the main wear mode, instrumented drilling tests with a wireless temperature measurement device were performed. Temperatures behind the cutting edge reach temperatures above 500 °C for low cutting speeds. At this temperature the phenomenon of diffusion is thermally activated. Finally, in order to have an understanding of the machinability consistencies, a research on the materials’ behavior (Johnson-Cook) and the implementation of a numerical simulation were realized. The simulations carried out, using the previously identified behavior’s laws, model precisely the machining of the Ti6Al4V α+β and Ti54M. The heterogeneity of the β-treated Ti6Al4V does not allow a good modeling of the chip formation. Polycrystalline modeling would be more appropriate.
|
Page generated in 0.1076 seconds