Spelling suggestions: "subject:"excl"" "subject:"cxc""
1 |
The Development of Micro- and Nano-scale Techniques for Studying Cancer Cell InvasionBushman, Sarah Mansfield 21 September 2017 (has links)
No description available.
|
2 |
Secretion from the Leishmania flagellum as a potential mechanism of virulence factor deliveryMakin, Laura January 2017 (has links)
Protozoa of the Leishmania genus are transmitted between mammalian hosts by the sandfly and cause the neglected tropical disease leishmaniasis. Upon injection into the mammalian host by the sandfly promastigote-form parasites are phagocytosed by macrophages, where they differentiate into amastigotes. Although many virulence factors are known to modulate macrophage signalling pathways to favour infection, the delivery mechanisms are largely unknown. During differentiation to amastigotes the promastigote flagellum shortens dramatically and the fate of the excess flagellar membrane is unknown. Here we investigate the possibility that during Leishmania mexicana differentiation, shedding of the flagellar membrane is a source of extracellular vesicles (EVs) which provide a virulence factor delivery mechanism. The kinetics and structural mechanisms of EV release from promastigotes were investigated by live cell imaging and by measuring the concentration of shed EVs. Isolated EVs from a differentiating parasite culture or a control promastigote parasite culture were analysed by fluorescence and electron microscopy and mass spectrometry. To study the biological effects of EVs, macrophages were exposed to isolated EVs or live promastigotes and cytokine secretion was quantified by ELISA. An LPG1 null mutant was used to assess the contribution of virulence factor lipophosphoglycan (LPG) to the observed effects. Known protein virulence factors and LPG are present in L. mexicana EV fractions as well as known flagellar proteins. We show that there is a link between L. mexicana flagellar shortening and EV release, which is a recently discovered phenomenon in Chlamydomonas and mammalian cell research. We find that isolated EVs and live promastigotes induce changes in secreted cytokine levels from human and murine macrophages, including a substantial and previously unreported suppression of CXCL10, a chemokine which plays a protective role in Leishmania infection. LPG contributes to the effects observed on cytokine production, and EVs may be an important delivery mechanism for LPG.
|
3 |
Molecular Signaling Mechanisms and Effector Functions of the Interleukin-17 Receptor in Human Airway Smooth Muscle Cells and Polymorphonuclear NeutrophilsDRAGON, Stephane 09 April 2010 (has links)
Immunopathological disorders are no longer defined by dysregulated T-helper (Th) type 1/ Th2 responses but account for modulatory cell types such as regulatory and Th17 cells. The newly defined Th17 subset is an effector memory subtype which regulates mucosal host defense responses. A distinctive feature of interleukin (IL)-17 is its ability to invoke neutrophilic responses and to synergize cytokine responses in proximal structural cells. This effect is most evident for proinflammatory cytokines and neutrophil-mobilizing chemokines which are under the regulatory control of the canonical, nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) pathway. The uniqueness of the IL-17A receptor (IL-17RA) signal transduction pathway however has been a limiting factor in uncovering IL-17-mediated effector functions since the receptor bears little homology to other known receptors and contains a unique cytoplasmic consensus binding motif. Hence, the composition, dynamics and subunit interactions of the IL-17R complex have become an emerging area of research where novel recruitment motifs and adaptor proteins are actively being explored. Our study sought to uncover the signal transduction and molecular mechanisms mediating the initiation and amplification responses induced by IL-17. We hypothesize that (i) IL-17 represents a key cytokine which initiates inflammatory responses by acting on proximal structural cells to rapidly release neutrophil-mobilizing chemokines and myeloid growth factors and that (ii) IL-17 directly promotes survival responses of immune effector cells. Genomic analysis of stimulated human airway smooth muscle cells support the proinflammatory nature of IL-17 as NF-κB associated genes and chemokines were most significantly upregulated within 2 hours. However, IL-17 induced a modest fold increase in gene expression levels whereby only 4 genes achieved greater than 2 fold increases. This, along with the observation that IL-17 enhanced IL-1β-mediated CXCL8 expression via transcriptional promoter activation levels and post-transcriptional mRNA stabilization mechanisms suggests that IL-17 cooperatively functions with secondary cytokines to mediate inflammatory responses. Despite activating the p38-mitogen-activated protein kinase (MAPK) signaling pathway in peripheral blood neutrophils, IL-17 did not directly affect the apoptotic capacity of these cells but unexpectedly antagonized the survival response mediated by the granulocyte-macrophage colony stimulating factor (GM-CSF). Collectively, our results suggest that IL-17 is a potent synergistic cytokine which signals via the MAPK-NF-κB pathway to indirectly recruit neutrophils via CXC-chemokines produced by non-hematopoietic cells and that IL-17 may potentially dampen inflammatory responses by directly antagonizing inflammatory effector cells.
|
4 |
Molecular Signaling Mechanisms and Effector Functions of the Interleukin-17 Receptor in Human Airway Smooth Muscle Cells and Polymorphonuclear NeutrophilsDRAGON, Stephane 09 April 2010 (has links)
Immunopathological disorders are no longer defined by dysregulated T-helper (Th) type 1/ Th2 responses but account for modulatory cell types such as regulatory and Th17 cells. The newly defined Th17 subset is an effector memory subtype which regulates mucosal host defense responses. A distinctive feature of interleukin (IL)-17 is its ability to invoke neutrophilic responses and to synergize cytokine responses in proximal structural cells. This effect is most evident for proinflammatory cytokines and neutrophil-mobilizing chemokines which are under the regulatory control of the canonical, nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) pathway. The uniqueness of the IL-17A receptor (IL-17RA) signal transduction pathway however has been a limiting factor in uncovering IL-17-mediated effector functions since the receptor bears little homology to other known receptors and contains a unique cytoplasmic consensus binding motif. Hence, the composition, dynamics and subunit interactions of the IL-17R complex have become an emerging area of research where novel recruitment motifs and adaptor proteins are actively being explored. Our study sought to uncover the signal transduction and molecular mechanisms mediating the initiation and amplification responses induced by IL-17. We hypothesize that (i) IL-17 represents a key cytokine which initiates inflammatory responses by acting on proximal structural cells to rapidly release neutrophil-mobilizing chemokines and myeloid growth factors and that (ii) IL-17 directly promotes survival responses of immune effector cells. Genomic analysis of stimulated human airway smooth muscle cells support the proinflammatory nature of IL-17 as NF-κB associated genes and chemokines were most significantly upregulated within 2 hours. However, IL-17 induced a modest fold increase in gene expression levels whereby only 4 genes achieved greater than 2 fold increases. This, along with the observation that IL-17 enhanced IL-1β-mediated CXCL8 expression via transcriptional promoter activation levels and post-transcriptional mRNA stabilization mechanisms suggests that IL-17 cooperatively functions with secondary cytokines to mediate inflammatory responses. Despite activating the p38-mitogen-activated protein kinase (MAPK) signaling pathway in peripheral blood neutrophils, IL-17 did not directly affect the apoptotic capacity of these cells but unexpectedly antagonized the survival response mediated by the granulocyte-macrophage colony stimulating factor (GM-CSF). Collectively, our results suggest that IL-17 is a potent synergistic cytokine which signals via the MAPK-NF-κB pathway to indirectly recruit neutrophils via CXC-chemokines produced by non-hematopoietic cells and that IL-17 may potentially dampen inflammatory responses by directly antagonizing inflammatory effector cells.
|
Page generated in 0.0595 seconds