1 |
Lipopolysaccharide-Mediated Regulation of IL-17 Receptor Levels in Human MonocytesZHANG, Xiubo 22 June 2011 (has links)
IL-17 promotes inflammation through the recruitment of monocytes and induction of various chemokines and inflammatory cytokines. Monocytes respond to IL-17 through the heteromeric IL-17 receptor (IL-17R) composed of subunits IL-17RA and IL-17RC. Together, monocytes and IL-17 amplify inflammation. Controlling the cellular response to IL-17 is crucial to prevent hyperactivation of inflammatory responses, which could lead to chronic inflammatory diseases. The cellular response to increased IL-17 levels may be limited by controlling the receptor levels. Before we understand how monocytes respond to IL-17 during infection, we must first characterize the expression of IL-17R in these cells in response to LPS, a well-characterized pro-inflammatory signal. The aim of this study is to understand the mechanisms which regulate IL-17R levels in human monocytes. IL-17R mRNA and protein levels were measured in response to LPS by RT-PCR and Western blot analysis in primary human monocytes, peripheral blood mononuclear cells (PBMC), and the human monocytic cell line, THP-1. LPS enhanced IL-17RA and RC transcript levels in monocytes and PBMC. In contrast, IL-17RA protein levels decreased with LPS treatment in these cells. Investigation into mechanisms regulating IL-17RA protein levels lead to the observation that IL-17RA undergoes receptor degradation in response to LPS. This work identifies for the first time that 1) LPS enhances transcript levels of IL-17R and 2) after LPS treatment, IL-17RA protein levels are reduced via an endosome-dependent degradation pathway. / Thesis (Master, Microbiology & Immunology) -- Queen's University, 2011-06-21 11:53:28.706
|
2 |
Molecular Signaling Mechanisms and Effector Functions of the Interleukin-17 Receptor in Human Airway Smooth Muscle Cells and Polymorphonuclear NeutrophilsDRAGON, Stephane 09 April 2010 (has links)
Immunopathological disorders are no longer defined by dysregulated T-helper (Th) type 1/ Th2 responses but account for modulatory cell types such as regulatory and Th17 cells. The newly defined Th17 subset is an effector memory subtype which regulates mucosal host defense responses. A distinctive feature of interleukin (IL)-17 is its ability to invoke neutrophilic responses and to synergize cytokine responses in proximal structural cells. This effect is most evident for proinflammatory cytokines and neutrophil-mobilizing chemokines which are under the regulatory control of the canonical, nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) pathway. The uniqueness of the IL-17A receptor (IL-17RA) signal transduction pathway however has been a limiting factor in uncovering IL-17-mediated effector functions since the receptor bears little homology to other known receptors and contains a unique cytoplasmic consensus binding motif. Hence, the composition, dynamics and subunit interactions of the IL-17R complex have become an emerging area of research where novel recruitment motifs and adaptor proteins are actively being explored. Our study sought to uncover the signal transduction and molecular mechanisms mediating the initiation and amplification responses induced by IL-17. We hypothesize that (i) IL-17 represents a key cytokine which initiates inflammatory responses by acting on proximal structural cells to rapidly release neutrophil-mobilizing chemokines and myeloid growth factors and that (ii) IL-17 directly promotes survival responses of immune effector cells. Genomic analysis of stimulated human airway smooth muscle cells support the proinflammatory nature of IL-17 as NF-κB associated genes and chemokines were most significantly upregulated within 2 hours. However, IL-17 induced a modest fold increase in gene expression levels whereby only 4 genes achieved greater than 2 fold increases. This, along with the observation that IL-17 enhanced IL-1β-mediated CXCL8 expression via transcriptional promoter activation levels and post-transcriptional mRNA stabilization mechanisms suggests that IL-17 cooperatively functions with secondary cytokines to mediate inflammatory responses. Despite activating the p38-mitogen-activated protein kinase (MAPK) signaling pathway in peripheral blood neutrophils, IL-17 did not directly affect the apoptotic capacity of these cells but unexpectedly antagonized the survival response mediated by the granulocyte-macrophage colony stimulating factor (GM-CSF). Collectively, our results suggest that IL-17 is a potent synergistic cytokine which signals via the MAPK-NF-κB pathway to indirectly recruit neutrophils via CXC-chemokines produced by non-hematopoietic cells and that IL-17 may potentially dampen inflammatory responses by directly antagonizing inflammatory effector cells.
|
3 |
Molecular Signaling Mechanisms and Effector Functions of the Interleukin-17 Receptor in Human Airway Smooth Muscle Cells and Polymorphonuclear NeutrophilsDRAGON, Stephane 09 April 2010 (has links)
Immunopathological disorders are no longer defined by dysregulated T-helper (Th) type 1/ Th2 responses but account for modulatory cell types such as regulatory and Th17 cells. The newly defined Th17 subset is an effector memory subtype which regulates mucosal host defense responses. A distinctive feature of interleukin (IL)-17 is its ability to invoke neutrophilic responses and to synergize cytokine responses in proximal structural cells. This effect is most evident for proinflammatory cytokines and neutrophil-mobilizing chemokines which are under the regulatory control of the canonical, nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) pathway. The uniqueness of the IL-17A receptor (IL-17RA) signal transduction pathway however has been a limiting factor in uncovering IL-17-mediated effector functions since the receptor bears little homology to other known receptors and contains a unique cytoplasmic consensus binding motif. Hence, the composition, dynamics and subunit interactions of the IL-17R complex have become an emerging area of research where novel recruitment motifs and adaptor proteins are actively being explored. Our study sought to uncover the signal transduction and molecular mechanisms mediating the initiation and amplification responses induced by IL-17. We hypothesize that (i) IL-17 represents a key cytokine which initiates inflammatory responses by acting on proximal structural cells to rapidly release neutrophil-mobilizing chemokines and myeloid growth factors and that (ii) IL-17 directly promotes survival responses of immune effector cells. Genomic analysis of stimulated human airway smooth muscle cells support the proinflammatory nature of IL-17 as NF-κB associated genes and chemokines were most significantly upregulated within 2 hours. However, IL-17 induced a modest fold increase in gene expression levels whereby only 4 genes achieved greater than 2 fold increases. This, along with the observation that IL-17 enhanced IL-1β-mediated CXCL8 expression via transcriptional promoter activation levels and post-transcriptional mRNA stabilization mechanisms suggests that IL-17 cooperatively functions with secondary cytokines to mediate inflammatory responses. Despite activating the p38-mitogen-activated protein kinase (MAPK) signaling pathway in peripheral blood neutrophils, IL-17 did not directly affect the apoptotic capacity of these cells but unexpectedly antagonized the survival response mediated by the granulocyte-macrophage colony stimulating factor (GM-CSF). Collectively, our results suggest that IL-17 is a potent synergistic cytokine which signals via the MAPK-NF-κB pathway to indirectly recruit neutrophils via CXC-chemokines produced by non-hematopoietic cells and that IL-17 may potentially dampen inflammatory responses by directly antagonizing inflammatory effector cells.
|
Page generated in 0.0127 seconds