• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 7
  • Tagged with
  • 8
  • 8
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Role of monoamine oxidase in the regulation of extracellular 5-HT and 5-HT1̲ receptor function

Sleight, A. J. January 1988 (has links)
No description available.
2

Lipopolysaccharide-Mediated Regulation of IL-17 Receptor Levels in Human Monocytes

ZHANG, Xiubo 22 June 2011 (has links)
IL-17 promotes inflammation through the recruitment of monocytes and induction of various chemokines and inflammatory cytokines. Monocytes respond to IL-17 through the heteromeric IL-17 receptor (IL-17R) composed of subunits IL-17RA and IL-17RC. Together, monocytes and IL-17 amplify inflammation. Controlling the cellular response to IL-17 is crucial to prevent hyperactivation of inflammatory responses, which could lead to chronic inflammatory diseases. The cellular response to increased IL-17 levels may be limited by controlling the receptor levels. Before we understand how monocytes respond to IL-17 during infection, we must first characterize the expression of IL-17R in these cells in response to LPS, a well-characterized pro-inflammatory signal. The aim of this study is to understand the mechanisms which regulate IL-17R levels in human monocytes. IL-17R mRNA and protein levels were measured in response to LPS by RT-PCR and Western blot analysis in primary human monocytes, peripheral blood mononuclear cells (PBMC), and the human monocytic cell line, THP-1. LPS enhanced IL-17RA and RC transcript levels in monocytes and PBMC. In contrast, IL-17RA protein levels decreased with LPS treatment in these cells. Investigation into mechanisms regulating IL-17RA protein levels lead to the observation that IL-17RA undergoes receptor degradation in response to LPS. This work identifies for the first time that 1) LPS enhances transcript levels of IL-17R and 2) after LPS treatment, IL-17RA protein levels are reduced via an endosome-dependent degradation pathway. / Thesis (Master, Microbiology & Immunology) -- Queen's University, 2011-06-21 11:53:28.706
3

DISPARATE REGULATION OF NEUTROPHIL PRO-INFLAMMATORY FUNCTIONING BY CXCR2-SELECTIVE CHEMOKINES

Williams, Mark Anthony January 2000 (has links)
No description available.
4

Regulation of the human delta opioid receptor

Navratilova, Edita January 2007 (has links)
Regulation of the human delta opioid receptor (hDOR) is implicated in the development of tolerance to chronic morphine (Zhu et al., 1999). In addition, DORs are promising analgesic targets for the management of chronic pain states such as inflammatory or neuropathic pain (Cahill et al., 2007). Therefore, in this study, we investigated multiple aspects of hDOR regulation, including receptor phosphorylation, beta-arrestin binding, receptor internalization, down-regulation and desensitization, using recombinant Chinese hamster ovary (CHO) cells expressing the wild-type or various mutant hDOR constructs. We found that structurally diverse delta opioid agonists regulate the hDOR by different mechanisms. We demonstrate that morphine is able to activate the initial step of the regulatory events, phosphorylation of S363, but due to requirements for simultaneous activation of multiple sites, morphine fails to promote beta-arrestin binding, receptor internalization and down-regulation. We also report that peptide delta opioid receptor agonists and a non-peptide agonist SNC80 differ in their ability to down-regulate the hDOR. Further differences in receptor phosphorylation, desensitization and beta-arrestin translocation between these two classes of full DOR agonists are reveled by truncation of the receptor's C-terminus or by mutation of the primary phosphorylation site, S363. Studies using the mutant receptors identify the C-terminus as the important domain for hDOR phosphorylation, beta-arrestin binding and down-regulation by both peptide and non-peptide agonists. S363 within the C-terminus is critically involved in receptor phosphorylation, desensitization and down-regulation, but not in beta-arrestin binding and receptor internalization. In contrast to peptide agonists, SNC80 is able to phosphorylate and activate secondary intracellular domain(s), in addition to the C-terminus, which participate in beta-arrestin recruitment and receptor desensitization and down-regulation. Therefore, agonist-specific differences were detected for multiple regulatory events between morphine, peptide agonists and SNC80. Differential agonist-mediated regulation of the human delta opioid receptor may be used to design pain therapy drugs with improved analgesic properties and minimal side effects.
5

Cross-talk and regulation between glutamate and GABAB receptors

Kantamneni, Sriharsha 23 March 2015 (has links)
yes / Brain function depends on co-ordinated transmission of signals from both excitatory and inhibitory neurotransmitters acting upon target neurons. NMDA, AMPA and mGluR receptors are the major subclasses of glutamate receptors that are involved in excitatory transmission at synapses, mechanisms of activity dependent synaptic plasticity, brain development and many neurological diseases. In addition to canonical role of regulating presynaptic release and activating postsynaptic potassium channels, GABAB receptors also regulate glutamate receptors. There is increasing evidence that metabotropic GABAB receptors are now known to play an important role in modulating the excitability of circuits throughout the brain by directly influencing different types of postsynaptic glutamate receptors. Specifically, GABAB receptors affect the expression, activity and signaling of glutamate receptors under physiological and pathological conditions. Conversely, NMDA receptor activity differentially regulates GABAB receptor subunit expression, signaling and function. In this review I will describe how GABAB receptor activity influence glutamate receptor function and vice versa. Such a modulation has widespread implications for the control of neurotransmission, calcium-dependent neuronal function, pain pathways and in various psychiatric and neurodegenerative diseases.
6

Engineering an Anti-arrhythmic Calmodulin

Walton, Shane David 26 September 2016 (has links)
No description available.
7

Expression of Genes Encoding for Drug Metabolism in the Small Intestine

Lindell, Monica January 2003 (has links)
<p>This investigation focused on the mRNA expression of drug metabolising Cytochromes P-450 (CYP) and UDP-glucuronosyltransferases (UGT) and the transport protein P-glycoprotein (Pgp) in the small intestine of humans and rats.</p><p>The mRNA expression of the investigated genes in the human small intestine (duodenum) varies between individuals giving each one of us personal profile. In general, the most dominant forms are Pgp, CYPs 2C9, 2D6, 3A4, and UGTs 1A1, 1A10, 2B7. However, which of these is the highest expressed one varies between individuals.</p><p>The correlation in expression between some CYP forms and UGT forms respectively is relatively high, which indicates that they have some regulatory mechanisms in common. It was also shown that the mRNA expression of both CYPs and UGTs may be affected by endogenous and exogenous factors. Sex and ethnic background, affected the mRNA expression of CYP2A6 and 2E1 respectively. Commonly used drugs such as acetylsalicylicacid (ASA) and omeprazole (omep) affect CYP2A6, CYP2E1 (ASA) and CYP3A4, UGT1A4 (omep). The expression of UGT1A4 is also affected by smoking. All these factors are commonly used and can therefore lead to important drug-drug interactions.</p><p>It was also shown that the human small intestinal CYP mRNA expression pattern differs from that found in the rat. The rat CYP expression is rather constant between the different individuals, and the main rat intestinal forms are CYP1A1, CYP2C, CYP2D6 and CYP3A1. The expression is the same for females and males and no difference can be seen between the different segments of the rat small intestine. As metabolic studies have often been done with rat liver we compared the mRNA expression in the two organs. We found that the mRNA expression of 1A1 was absent in the liver and that the CYP2B1, CYP2Cs, CYP2D1 and Pgp all had a stronger mRNA expression in the small intestine compared to the liver. It is therefore important to realise that results from metabolic studies on liver may not be directly extrapolated to the small intestine.</p><p>Artemisinin is an orally used drug in multidrug treatment of malaria in Southeast Asia. It has been suggested that artemisinin can induce drug metabolism and therefore be involved in drug-drug interactions. This study shows that artemisinin induces mainly the CYP2B via nuclear receptor CAR.</p>
8

Expression of Genes Encoding for Drug Metabolism in the Small Intestine

Lindell, Monica January 2003 (has links)
This investigation focused on the mRNA expression of drug metabolising Cytochromes P-450 (CYP) and UDP-glucuronosyltransferases (UGT) and the transport protein P-glycoprotein (Pgp) in the small intestine of humans and rats. The mRNA expression of the investigated genes in the human small intestine (duodenum) varies between individuals giving each one of us personal profile. In general, the most dominant forms are Pgp, CYPs 2C9, 2D6, 3A4, and UGTs 1A1, 1A10, 2B7. However, which of these is the highest expressed one varies between individuals. The correlation in expression between some CYP forms and UGT forms respectively is relatively high, which indicates that they have some regulatory mechanisms in common. It was also shown that the mRNA expression of both CYPs and UGTs may be affected by endogenous and exogenous factors. Sex and ethnic background, affected the mRNA expression of CYP2A6 and 2E1 respectively. Commonly used drugs such as acetylsalicylicacid (ASA) and omeprazole (omep) affect CYP2A6, CYP2E1 (ASA) and CYP3A4, UGT1A4 (omep). The expression of UGT1A4 is also affected by smoking. All these factors are commonly used and can therefore lead to important drug-drug interactions. It was also shown that the human small intestinal CYP mRNA expression pattern differs from that found in the rat. The rat CYP expression is rather constant between the different individuals, and the main rat intestinal forms are CYP1A1, CYP2C, CYP2D6 and CYP3A1. The expression is the same for females and males and no difference can be seen between the different segments of the rat small intestine. As metabolic studies have often been done with rat liver we compared the mRNA expression in the two organs. We found that the mRNA expression of 1A1 was absent in the liver and that the CYP2B1, CYP2Cs, CYP2D1 and Pgp all had a stronger mRNA expression in the small intestine compared to the liver. It is therefore important to realise that results from metabolic studies on liver may not be directly extrapolated to the small intestine. Artemisinin is an orally used drug in multidrug treatment of malaria in Southeast Asia. It has been suggested that artemisinin can induce drug metabolism and therefore be involved in drug-drug interactions. This study shows that artemisinin induces mainly the CYP2B via nuclear receptor CAR.

Page generated in 0.0954 seconds