• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Defining Components Linked to Bacterial Nutritional Utilization of Cyanide as a Sole Nitrogen Source

Jones, Lauren Brittany 05 1900 (has links)
One of the challenges in biology is placing a function on the myriad of gene sequences having become available from rapid advances in genome sequencing. One such example is a gene cluster (Nit1C) found in bacteria that is tied to the unusual ability of certain bacteria to grow when supplied cyanide as the sole nitrogen source. The term cyanotrophs has been applied to such bacteria, for which a genetic linkage between cyanotrophy and Nit1C was demonstrated for 10 separate bacteria. In addition to growth, cyanide induced the expression of Nit1C genes in all organisms tested, and in one case, deletion of one of the Nit1C genes (nitC) caused a loss of growth. Of the ten bacteria able to grow cyanotrophically, all gave evidence of harboring Nit1C on their genome except for two (Pseudomonas fluorescens Pf11764 and P. monteilii BCN3), which were sequenced and the presence of Nit1C was also confirmed. A broader search of bacteria identified 270 separate strains with the cluster, all limited to bacteria spanning the phyla Firmicutes, Actinobacteria, Proteobacteria and Cyanobacteria. Remarkably, many examples of a single representative of a given taxon contained Nit1C, most poignantly displayed by Pf11764 and PmBCN3; the interpretation being the cluster was likely acquired by horizontal gene transfer in response to cyanide as an environmental cue. Consistent with its absence in Archaea is the time line for the emergence of cyanide producing organisms (cyanogens) on earth dating back only 400-500 million years.
2

Linkage of the Nitrilase-Encoding Nit1C Gene Cluster to Cyanotrophy in Acinetobacter haemolyticus

Dale, Layla Momo 07 1900 (has links)
The Nit1C cluster is a conserved gene cluster of seven genes that confers bacterial growth on cyanide as the sole nitrogen source. Bacteria with this ability are referred to as cyanotrophs. To date, the linkage between Nit1C and cyanotrophy has only been demonstrated for environmental isolates but the cluster also exists in certain medically related bacteria. In this study, a nosocomial isolate, Acinetobacter haemolyticus ATCC 19194, carrying Nit1C also displayed the ability to grow on cyanide. Growth on cyanide was accompanied by the induction of the cluster as was the mere exposure of cells to cyanide. Expression of the cluster was determined by measuring the activity of the nitrilase (NitC) coded for by the cluster and by transcriptional analysis (qRT-PCR). However, a disconnect between nitC message and NitC protein was observed depending on the phase of the growth cycle, the disconnect being related to proteolytic digestion of the NitC protein. Ironically, the cluster was also discovered to be upregulated in the absence of cyanide under nitrogen starvation conditions paralleling biofilm formation. The basis of the genetic linkage to cyanotrophy is not understood but taken together with results showing that nitrogen starvation and biofilm formation are also physiologically associated with Nit1C expression, points to a critical role for the cluster in stress-induced adaptation.

Page generated in 0.1086 seconds