• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Cucurbit Downy Mildew (Pseudoperonospora cubensis): Cucumber Resistance

Cooper, Jessica G. 23 January 2013 (has links)
Pseudoperonospora cubensis (Bert. et Curt) Rost. is the causal agent of cucurbit downy mildew (CDM). It is the most damaging cucumber pathogen on the Eastern Shore of Virginia and eastern parts of the United States. Pseudoperonospora cubensis is an obligate oomycete pathogen, infecting crops within the Cucurbitaceae family. The disease is characterized by angular chlorotic lesions and a downy or felt-like appearance on the abaxial side of the leaf. Control of this pathogen includes use of resistant cucumber cultivars and costly fungicide programs. Continuous use has led to resistance to commonly used fungicides. This has become a major concern and in response, seed companies have developed cucumber cultivars which claim downy mildew resistance.  This study evaluates different cucumber cultivars and assesses their level of resistance to CDM. The results indicate that an integrated management approach of reduced fungicide application and the use of resistant cultivars can suppress levels of CDM and yield a cucumber crop. Additionally, a molecular study was conducted, comparing the relative expression of genes encoding a basic PR-1 protein, a cytosolic ascorbate peroxidase protein and three resistance (R) gene proteins, in nineteen cultivars. All of the selected genes were analyzed using real-time PCR. The relative expression levels of the R-genes varied between cultivars. The basic PR-1 protein decreased expression in the majority of the cultivars, suggesting no involvement in the first twenty-four hours. Cytosolic ascorbate peroxidase relative expression levels suggest an increase in susceptible cultivars and a decrease in tolerant cultivars. / Master of Science
2

Characterization, development of a field inoculation method, and fungicide sensitivity screening of the Pythium blight pathogen of snap bean (Phaseolus vulgaris L.)

Harrison, Leigh Ann 05 May 2011 (has links)
New Jersey, Georgia, and the Eastern Shore of Virginia (ESV) are important snap bean (Phaseolus vulgaris L.) growing regions, but profitability is threatened by Pythium blight. Causal agents of Pythium blight on snap bean were identified using morphological characterization and sequence analysis of the rDNA-internal transcribed spacer (ITS) regions of 100 isolates. Most isolates were Pythium aphanidermatum (Edson) Fitzp. (53%), and also included Pythium deliense Meurs (31%; all from Georgia), Pythium ultimum Trow (12%), Pythium myriotylum Drechsler (2%), Pythium catenulatum Matthews (1%), and unknown Pythium sp. (1%). To our knowledge, this is the first report of P. deliense in Georgia and on common bean and squash (Cucurbita pepo L.); as well as the first report of P. catenulatum on lima bean (Phaseolus lunatus L.) and in New Jersey. Fungicide labeling and cultivar selection for Pythium blight management is hindered by difficulties associated with conducting successful trials, because the disease occurs sporadically and clustered in the field. Three P. aphanidermatum-infested inoculum substrates were evaluated at three concentrations. The vermiculite/V8 juice (5:3 weight to volume) inoculum (10,000 ppg/0.3 m) consistently caused at least 50% disease in 3 field trials. Sensitivity of the Pythium blight pathogens was determined in vitro against five fungicides. Twenty-two Pythium isolates representing P. aphanidermatum, P. deliense, P. ultimum, and P. myriotylum were inoculated to media amended with each active ingredient at 0, 100μg/ml, the concentration equivalent to the field labeled rate if applied on succulent beans at 187 L/ha, and the equivalent if applied at 374 L/ha. All isolates were completely sensitive (100% growth reduction, or GR) to all active ingredients at the labeled rates, except azoxystrobin. At 100μg/ml azoxystrobin, one P. deliense isolate had 8.9% GR. All isolates had 100% GR to copper hydroxide at 100μg/ml, and the lowest GR on mefenoxam-amended medium was 91.9%. At 100μg/ml cyazofamid, all P. deliense isolates were completely sensitive and variation was observed in P. aphanidermatum isolates. At 100μg/ml potassium phosphite, significant GR similarities were recorded within isolates of the same species, and less than 50% GR was observed in all P. deliense isolates. / Ph. D.

Page generated in 0.0377 seconds