• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • No language data
  • Tagged with
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

The Effects of Reinforcement Magnitude and Temporal Contingencies on Pre-Ratio Pause Duration

Bonem, Marilyn K. 01 May 1988 (has links)
The present study was conducted to determine whether conjugate magnitude and temporal contingencies were effective in increasing the pre-ratio pause (PRP) duration and to determine the controlling variables that govern such contingencies. It has been reported in the literature that magnitude of reinforcement, if presented contingently, is effective in controlling performance and that inserting intervals of blackout (BO), during which responding does not lead to reinforcement, virtually always leads to control of responding, even though it has not been presented contingently. The conjugate schedules experimentally arranged reinforcement such that the longer the PRP, the longer was the duration of access to reinforcement and/or the shorter was the BO, located either after reinforcement or after the response. The results of this study demonstrated that the major independent variable which controlled mean PRP duration on the various conjugate reinforcement schedules studied was the delay between the response and reinforcement. The duration of the PRP was not reliably controlled by a contingency which equated PRP duration with reinforcement duration, nor by a contingency which, through imposition of a delay to trial onset, held the local delay to reinforcement constant. Additionally, cycle-to-cycle variation in reinforcement magnitude, whether presented contingently or noncontingently on PRP duration, had no reliable effect on PRP duration when compared to FR 1. The primary effect of variation in the duration of reinforcement was to reduce the variability, not the duration, of the PRP. The results of the study are briefly discussed in terms of a number of theories. These include: the maximization account (Logan, 1960); the matching law (Herrnstein, 1970); Harzem and Harzem's (1981) theory describing the unconditioned inhibitory stimulus function of reinforcement; behavioral contrast (Reynolds, 1961); and Dews' (1981) account of the importance of a response-reinforcer contiguity relation.
2

Influence of asymmetric valve timing strategy on in-cylinder flow of the internal combustion engine

Butcher, Daniel S. A. January 2016 (has links)
Variable Valve Timing (VVT) presents a powerful tool in the relentless pursuit of efficiency improvements in the internal combustion engine. As the valves have such ultimate control over the gas exchange processes, extensive research effort in this area has shown how valve event timing can be manipulated to reduce engine pumping losses, fuel consumption and engine out emissions. Pumping losses may be significantly reduced by use of throttleless strategies, making use of intake valve duration for load control, while alternative cycles such as the Miller cycle allow modification of the effective compression ratio. More recently, the value of single valve operation in part load conditions is exploited, bringing with it the concept of asymmetric valve lifts. Work in this area found the side effect of asymmetric valve operation is a significant change in the behaviour of the in-cylinder flow structures, velocities and turbulence intensity. Work presented in this thesis exploits asymmetric valve strategies to modify the in-cylinder flow conditions. The Proper Orthogonal Decomposition (POD) is a method employed in the fluids dynamics field to facilitate the separation of coherent motion structures from the turbulence. In the presented work, the application of POD to in-cylinder flow analysis is further developed by the introduction of a novel method for identifying the POD modes representative of coherent motion and those representative of the turbulence. A POD mode correlation based technique is introduced and developed, with the resulting fields showing evidence of coherence and turbulence respectively. Experimental tests are carried out using a full length optically accessible, single cylinder research engine equipped with a fully variable valve train (FVVT) to allow full control of both valve timing and lift. In-cylinder flow is measured through the use of Particle Image Velocimetry (PIV) at several crank angle timings during the intake stroke whilst the engine is operated under a range of asymmetric valve strategies. The exhaust valves and one intake valve have their respective schedules fixed, while the second intake valve schedule is adjusted to 80\%, 60\%, 40\%, 20\%, 0\% lift. The resulting PIV fields are separated into coherent motion and turbulence using the developed technique, allowing for analysis of each constituent independently. The coherent element gives insight to large scale flows, often of the order of magnitude of the cylinder. These structures not only give a clear indication of the overall motion and allow assessment of flow characteristics such as swirl and tumble ratio, but the variation in the spatial location of these structures provides additional insight to the cyclic to cycle variation (CCV) of the flow, which would not otherwise be possible due to the inclusion of the turbulent data. Similarly, with the cyclic variation removed from the turbulent velocity field, a true account of the fluctuating velocity, u' and derived values such as the Turbulent Kinetic Energy (TKE) may be gained. Results show how manipulation of a one intake valve timing can influence both the large scale motions and the turbulence intensity. By the reduction of lift, the swirl ratio is increased almost linearly as the typical counter-rotating vortex pair becomes asymmetric, before a single vortex structure is observed in the lowest lift cases. A switching mechanism between the two is identified and found to be responsible for increased levels of CCV. With the reduction in lift, TKE is observed not only to increase, but change the spatial distribution of turbulence. Of course, the reduction in valve lift comes with the penalty of a reduced valve curtain area. However, it was identified both in literature and throughout this study that the reduction in lift did not negatively influence the engine breathing as the same trapped mass was achieved under all cases with no adjustment of manifold pressure. While literature shows both bulk motion and turbulence are key in liquid fuel break-up during the intake stroke, the mixing effects under port-injected natural gas were investigated experimentally using Laser Induced Fluorescence (LIF). The valve strategy was found to have no significant effect on the mixture distribution at the time of spark.

Page generated in 0.1111 seconds