• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

A Low Complexity Cyclic Prefix Reconstruction Scheme for Single-Carrier Systems with Frequency-Domain Equalization

Hwang, Ruei-Ran 25 August 2010 (has links)
The cyclic prefix (CP) is usually adopted in single carrier frequency domain equalization (SC-FDE) system to avoid inter-block interference (IBI) and inter-symbol interference (ISI) in multipath fading channels. In addition, the use of CP also converts the linear convolution between the transmitted signal and the channel into a circular convolution, leading to significant decrease in receiver equalization. However, the use of CP reduces the bandwidth efficiency. Therefore the SC-FDE system without CP is investigated in this thesis. A number of schemes have been proposed to improve the performance of systems without CP, where both IBI and ICI are dramatically increased. Unfortunately, most of the existing schemes have extremely high computational complexity and are difficult to realize. In this thesis, a novel low-complexity CP reconstruction (CPR) scheme is proposed for interference cancellation, where the successive interference cancellation (SIC) and QR decomposition (QRD) are adopted. In addition, the system performance is further improved by using the fact that the interferences of different symbols are not the same. Simulation experiments are conducted to verify the system performance of the proposed scheme. It is shown that the proposed scheme can effectively reduce the interference, while maintain a low computational complexity.

Page generated in 0.0624 seconds