1 |
Involvement of PI3K/Akt/TOR pathway in stretch-induced hypertrophy of myotubesSASAI, NOBUAKI, 笹井, 宣昌 25 March 2010 (has links)
名古屋大学博士学位論文 学位の種類:博士(リハビリテーション療法学) (課程) 学位授与年月日 平成22年3月25日
|
2 |
Cellular Responses to Complex Strain Fields Studied in Microfluidic DevicesChagnon-Lessard, Sophie 25 July 2018 (has links)
Cells in living organisms are constantly experiencing a variety of mechanical cues. From the stiffness of the extra cellular matrix to its topography, not to mention the presence of shear stress and tension, the physical characteristics of the microenvironment shape the cells’ fate. A rapidly growing body of work shows that cellular responses to these stimuli constitute regulatory mechanisms in many fundamental biological functions. Substrate strains were previously shown to be sensed by cells and activate diverse biochemical signaling pathways, leading to major remodeling and reorganization of cellular structures. The majority of studies had focused on the stretching avoidance response in near-uniform strain fields. Prior to this work, the cellular responses to complex planar strain fields were largely unknown. In this thesis, we uncover various aspects of strain sensing and response by first developing a tailored lab-on-a-chip platform that mimics the non-uniformity and complexity of physiological strains. These microfluidic cell stretchers allow independent biaxial control, generate cyclic stretching profiles with biologically relevant strain and strain gradient amplitudes, and enable high resolution imaging of on-chip cell cultures. Using these microdevices, we reveal that strain gradients are potent mechanical cues by uncovering the phenomenon of cell gradient avoidance. This work establishes that the cellular mechanosensing machinery can sense and localize changes in strain amplitude, which orchestrate a coordinated cellular response. Subsequently, we investigate the effect of multiple changes in stretching directions to further explore mechanosensing subtleties. The evolution of the cellular response shed light on the interplay of the strain avoidance and the newly demonstrated strain gradient avoidance, which were found to occur on two different time scales. Finally, we extend our work to study the influence of cyclic strains on the early stages of cancer development in epithelial tissues (using MDCK-RasV12 system), which was previously largely unexplored. This work reveals that external mechanical forces impede the healthy cells’ ability to eliminate newly transformed cells and greatly promote invasive protrusions, as a result of their different mechanoresponsiveness. Overall, not only does our work reveal new insights regarding the long-range organization in population of cells, but it may also contribute to paving the way towards new approaches in cancer prevention treatments.
|
3 |
Responses of fibroblasts and chondrosarcoma cells to mechanical and chemical stimuliPiltti, Juha January 2017 (has links)
Osteoarthritis is an inflammation-related disease that progressively destroys joint cartilage. This disease causes pain and stiffness of the joints, and at advanced stages, limitations to the movement or bending of injured joints. Therefore, it often restricts daily activities and the ability to work. Currently, there is no cure to prevent its progression, although certain damaged joints, such as fingers, knees and hips, can be treated with joint replacement surgeries. However, joint replacement surgeries of larger joints are very invasive operations and the joint replacements have a limited lifetime. Cell-based therapies could offer a way to treat cartilage injuries before the ultimate damage of osteoarthritis on articular cartilage. The development of novel treatments needs both a good knowledge of articular cartilage biology and tissue engineering methods. This thesis primarily investigates the effects of mechanical cyclic stretching, a 5% low oxygen atmosphere and the Rho-kinase inhibitor, Y-27632, on protein responses in chondrocytic human chondrosarcoma (HCS-2/8) cells. Special focus is placed on Rho-kinase inhibition, relating to its potential to promote and support extracellular matrix production in cultured chondrocytes and its role in fibroblast cells as a part of direct chemical cellular differentiation. The means to enhance the production of cartilage-specific extracellular matrix is needed for cell-based tissue engineering applications, since cultured chondrocytes quickly lose their cartilage-specific phenotype. A mechanical 8% cyclic cell stretching at a 1 Hz frequency was used to model a stretching rhythm similar to walking. The cellular stretching relates to stresses, which are directed to chondrocytes during the mechanical load. The stretch induced changes in proteins related, e.g., to certain cytoskeletal proteins, but also in enzymes associated with protein synthesis, such as eukaryotic elongation factors 1-beta and 1-delta. Hypoxic conditions were used to model the oxygen tension present in healthy cartilage tissue. Long-term hypoxia changed relative amounts in a total of 44 proteins and induced gene expressions of aggrecan and type II collagen, in addition to chondrocyte differentiation markers S100A1 and S100B. A short-term inhibition of Rho-kinase failed to induce extracellular matrix production in fibroblasts or in HCS-2/8 cells, while its long-term exposure increased the expressions of chondrocyte-specific genes and differentiation markers, and also promoted the synthesis of sulfated glycosaminoglycans by chondrocytic cells. Interestingly, Rho kinase inhibition under hypoxic conditions produced a more effective increase in chondrocyte-specific gene expression and synthesis of extracellular matrix components by HCS-2/8 cells. The treatment induced changes in the synthesis of 101 proteins and ELISA analysis revealed a sixfold higher secretion of type II collagen compared to control cells. The secretion of sulfated glycosaminoglycans was simultaneously increased by 65.8%. Thus, Rho-kinase inhibition at low oxygen tension can be regarded as a potential way to enhance extracellular matrix production and maintain a chondrocyte phenotype in cell-based tissue engineering applications.
|
Page generated in 0.0725 seconds