1 |
The geotechnical characterisation of Christchurch sands for advanced soil modelling.Taylor, Merrick Leonard January 2015 (has links)
In 2010 and 2011 Christchurch, New Zealand experienced a series of earthquakes that caused extensive damage across the city, but primarily to the Central Business District (CBD) and eastern suburbs. A major feature of the observed damage was extensive and severe soil liquefaction and associated ground damage, affecting buildings and infrastructure. The behaviour of soil during earthquake loading is a complex phenomena that can be most comprehensively analysed through advanced numerical simulations to aid engineers in the design of important buildings and critical facilities. These numerical simulations are highly dependent on the capabilities of the constitutive soil model to replicate the salient features of sand behaviour during cyclic loading, including liquefaction and cyclic mobility, such as the Stress-Density model. For robust analyses advanced soil models require extensive testing to derive engineering parameters under varying loading conditions for calibration. Prior to this research project little testing on Christchurch sands had been completed, and none from natural samples containing important features such as fabric and structure of the sand that may be influenced by the unique stress-history of the deposit.
This research programme is focussed on the characterisation of Christchurch sands, as typically found in the CBD, to facilitate advanced soil modelling in both res earch and engineering practice - to simulate earthquake loading on proposed foundation design solutions including expensive ground improvement treatments. This has involved the use of a new Gel Push (GP) sampler to obtain undisturbed samples from below the ground-water table. Due to the variable nature of fluvial deposition, samples with a wide range of soil gradations, and accordingly soil index properties, were obtained from the sampling sites. The quality of the samples is comprehensively examined using available data from the ground investigation and laboratory testing. A meta-quality assessment was considered whereby a each method of evaluation contributed to the final quality index assigned to the specimen.
The sampling sites were characterised with available geotechnical field-based test data, primarily the Cone Penetrometer Test (CPT), supported by borehole sampling and shear-wave velocity testing. This characterisation provides a geo- logical context to the sampling sites and samples obtained for element testing. It
also facilitated the evaluation of sample quality. The sampling sites were evaluated for liquefaction hazard using the industry standard empirical procedures, and showed good correlation to observations made following the 22 February 2011 earthquake. However, the empirical method over-predicted liquefaction occurrence during the preceding 4 September 2010 event, and under-predicted for the subsequent 13 June 2011 event. The reasons for these discrepancies are discussed.
The response of the GP samples to monotonic and cyclic loading was measured in the laboratory through triaxial testing at the University of Canterbury geomechanics laboratory. The undisturbed samples were compared to reconstituted specimens formed in the lab in an attempt to quantify the effect of fabric and structure in the Christchurch sands. Further testing of moist tamped re- constituted specimens (MT) was conducted to define important state parameters and state-dependent properties including the Critical State Line (CSL), and the stress-strain curve for varying state index. To account for the wide-ranging soil gradations, selected representative specimens were used to define four distinct CSL. The input parameters for the Stress-Density Model (S-D) were derived from a suite of tests performed on each representative soil, and with reference to available GP sample data.
The results of testing were scrutinised by comparing the data against expected trends. The influence of fabric and structure of the GP samples was observed to result in similar cyclic strength curves at 5 % Double Amplitude (DA) strain criteria, however on close inspection of the test data, clear differences emerged. The natural samples exhibited higher compressibility during initial loading cycles, but thereafter typically exhibited steady growth of plastic strain and excess pore water pressure towards and beyond the strain criteria and initial liquefaction, and no flow was observed. By contrast the reconstituted specimens exhibited a stiffer response during initial loading cycles, but exponential growth in strains and associated excess pore water pressure beyond phase-transformation, and particularly after initial liquefaction where large strains were mobilised in subsequent cycles. These behavioural differences were not well characterised by the cyclic strength curve at 5 % DA strain level, which showed a similar strength for both GP samples and MT specimens.
A preliminary calibration of the S-D model for a range of soil gradations is derived from the suite of laboratory test data. Issues encountered include the
influence of natural structure on the peak-strength–state index relationship, resulting in much higher peak strengths than typically observed for sands in the literature. For the S-D model this resulted in excessive stiffness to be modelled during cyclic mobility, when the state index becomes large momentarily, causing strain development to halt. This behaviour prevented modelling the observed re- sponse of silty sands to large strains, synonymous with “liquefaction”. Efforts to reduce this effect within the current formulation are proposed as well as future research to address this issue.
|
2 |
CYCLIC LOAD RESISTANCE AND DYNAMIC PROPERTIES OF SELECTED SOIL FROM SOUTHERN ILLINOIS USING UNDISTURBED AND REMOLDED SAMPLESPokharel, Janak 01 December 2014 (has links)
The liquefaction resistance of undisturbed soil samples collected from a selected location in Carbondale, Southern Illinois was evaluated by conducting cyclic triaxial tests. Index property tests were carried out on the sample for identification and classification of the soil. Cyclic triaxial tests were conducted on undisturbed sample after saturation, undisturbed sample at natural water content and remolded samples prepared by compaction in the lab. The results were used to evaluate the effect of saturation and remolding on liquefaction resistance of the local soil. Effect of effective confining pressure on dynamic properties of soil (Young's Modulus and Damping ratio) was also studied. Forty five stress controlled cyclic triaxial tests were performed. Three different values of initial effective confining pressure (5 psi, 10 psi and 15 psi) were used and cyclic stress ratio was varied from 0.1 to 0.5 in order to apply different cyclic shear stresses. The results show that the cyclic load resistance of soil decreases as a result of remolding. Saturated undisturbed samples show increase in resistance to liquefaction with increase in initial confining pressure. Remolded samples were prepared by compaction in the lab keeping unit weight and water content equal to that of undisturbed samples. Remolded samples show increase in liquefaction resistance with increase in confining pressure. Undisturbed samples at natural water content show increase in resistance to develop axial strain with increase in confining pressure. Both the rate of excess pressure development and axial strain development increase significantly as a result of remolding. While investigating the effect of saturation of undisturbed samples on liquefaction resistance of soil, interesting observations were made. The excess pressure buildup rate was faster in case of saturated undisturbed samples compared to that in samples with natural water content. On the other hand, rate of strain development was significantly high in case of sample with natural water content compared to that in saturated sample. Also, results obtained from cyclic triaxial tests on saturated undisturbed samples were compared with results obtained from similar tests on Ottawa Sand (Lama 2014) sample. The comparison shows that the saturated undisturbed soil samples of the selected local soil have very high resistance to liquefaction both in terms of initial liquefaction and development of 2.5% and 5% axial strain. Modulus of Elasticity and damping ratio were studied as important dynamic properties of soil. Young's Modulus was observed to decrease significantly at higher strain levels for all three types of samples. Young's modulus increased with increase in effective confining pressure, the effect of confining pressure being large at low strain level and almost insignificant at higher strain level. Damping ratio was highest in undisturbed sample at natural water content and smallest in remolded sample and damping ratio for saturated undisturbed sample falls in between. The damping ratio did not show any definite correlation with strain and confining pressure at lower strain level. But, for strain higher than 1% double amplitude axial strain, damping ratio significantly decreases with increase in strain. Damping ratio increases with increase in confining pressure as observed at high strain for all samples.
|
Page generated in 0.1052 seconds