• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • No language data
  • Tagged with
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Developing 1,2,3,4-tetrahydro-5H-aryl[1,4]diazepin-5-ones and Related Scaffolds as Poly-(ADP-ribosyl) Polymerase (PARP) Inhibitors and Exploring Their Targeted Polypharmacology with Kinases

Sulier, Kiaya Minh-Li 08 June 2017 (has links)
Poly-(ADP-ribsoyl) Polymerases (PARPs) are a superfamily of enzymes comprised of 17 known isoforms. PARP inhibitors (PARPi) have shown success in clinical trials for the treatment of homologous recombination-deficient cancers. Though proven effective initially, tumors treated with PARPi eventually develop resistance. Combinatorial therapeutics targeting PARP and other pathways that may re-sensitize tumors to PARP inhibition, including PI3K/AKT/mTor pathway, and cell-cycle checkpoints (such as CDKs, CHK, and Wee) are being tested. In this context, the synthetic lethality of cyclin-dependent kinase 1 (CDK1) and PARP1 is known. Evaluation of PARP1 and CDK1 pharmacophores led to the development of the tetrahydro-arylazepinone (TAAP) scaffold as a potential dual PARP1/CDK1 inhibitor. We screened a handful of TAAP analogs against PARP1 in a cell-free assay that identified the low micromolar PARP1 inhibitor 1,2,3,4-tetrahydro-5H-benzo[e][1,4]-diazepin-5-one (TBAP), which served as the lead compound. The analogous 1,2,3,4-tetrahydro-5H-pyrido[2,3-e][1,4]-diazepin-5-one (TPAP) series showed a similar bioactivity profile. Satisfyingly, the N1-benzyl TPAP analogue showed activity in the low nanomolar range. The TAAP series (i.e., 6/7-membered scaffold) unfortunately lacked CDK1 inhibitory activity. Finally, many PARPi's show poor isoform-selectivity. The development of isoform-selective PARPi can clarify the specific function of each PARP isoform and may reduce the adverse side effects shown by PARPi. A handful of TAAP analogs were screened against 13 PARP isoforms, where some compounds demonstrated exquisite PARP1/2 selectivity. Concurrently, we discovered an inhibitor for PARP11, an isoform that lacks any known synthetic ligand. Future directions are suggested towards fine-tuning the structure-activity relationship of TAAP-isoform selective PARPi as well as developing a dual PARP1/CDK1 inhibitor. / Master of Science

Page generated in 0.0973 seconds