1 |
Solução da equação de condução de calor na presença de uma mudança de fase em uma cavidade cilíndrica / Heat conduction equation solution in the presence of a change of state in a bounded axisymmetric cylindrical domainDanillo Silva de Oliveira 30 November 2011 (has links)
O problema da condução de calor, envolvendo mudança de fase, foi resolvido para o caso de uma cavidade limitada por duas superfícies cilíndricas indefinidamente longas. As condições de contorno impostas consistem em manter a temperatura da superfície interna fixa e abaixo da temperatura de fusão do material que preenche a cavidade, enquanto que a temperatura da superfície externa é mantida fixa e acima da temperatura de fusão. Como condição inicial se fixou a temperatura de todo o material que preenche a cavidade no valor da temperatura da superfície externa. A solução obtida consiste em duas soluções da equação de condução de calor, uma escrita para o material solidificado e outra escrita para o material em estado líquido. As duas soluções são formalmente escritas em termos da posição da frente de mudança de fase, que é representada por uma superfície cilíndrica com raio em expansão dentro da cavidade. A posição dessa superfície é, a princípio, desconhecida e é calculada impondo o balanço de energia através da frente da mudança de fase. O balanço de energia é expresso por uma equação diferencial de primeira ordem, cuja solução numérica fornece a posição da frente como função do tempo. A substituição da posição da frente de mudança de fase em um instante particular, nas soluções da equação de condução de calor, fornece a temperatura nas duas fases naquele instante. A solução obtida é ilustrada através de exemplos numéricos. / The heat conduction problem, in the presence of a change of state, was solved for the case of an indefinitely long cylindrical layer cavity. As boundary conditions it is imposed that the internal surface of the cavity is maintained below the fusion temperature of the infilling substance and the external surface is kept above it. The solution, obtained in non-dimensional variables, consists in two closed form heat conduction equation solutions for the solidified and liquid regions, which formally depend of the, at first, unknown position of the phase change front. The energy balance through the phase change front furnishes the equation for time dependence of the front position, which is numerically solved. Substitution of the front position for a particular instant in the heat conduction equation solutions gives the temperature distribution inside the cavity at that moment. The solution is illustrated with numerical examples.
|
2 |
Solução da equação de condução de calor na presença de uma mudança de fase em uma cavidade cilíndrica / Heat conduction equation solution in the presence of a change of state in a bounded axisymmetric cylindrical domainOliveira, Danillo Silva de 30 November 2011 (has links)
O problema da condução de calor, envolvendo mudança de fase, foi resolvido para o caso de uma cavidade limitada por duas superfícies cilíndricas indefinidamente longas. As condições de contorno impostas consistem em manter a temperatura da superfície interna fixa e abaixo da temperatura de fusão do material que preenche a cavidade, enquanto que a temperatura da superfície externa é mantida fixa e acima da temperatura de fusão. Como condição inicial se fixou a temperatura de todo o material que preenche a cavidade no valor da temperatura da superfície externa. A solução obtida consiste em duas soluções da equação de condução de calor, uma escrita para o material solidificado e outra escrita para o material em estado líquido. As duas soluções são formalmente escritas em termos da posição da frente de mudança de fase, que é representada por uma superfície cilíndrica com raio em expansão dentro da cavidade. A posição dessa superfície é, a princípio, desconhecida e é calculada impondo o balanço de energia através da frente da mudança de fase. O balanço de energia é expresso por uma equação diferencial de primeira ordem, cuja solução numérica fornece a posição da frente como função do tempo. A substituição da posição da frente de mudança de fase em um instante particular, nas soluções da equação de condução de calor, fornece a temperatura nas duas fases naquele instante. A solução obtida é ilustrada através de exemplos numéricos. / The heat conduction problem, in the presence of a change of state, was solved for the case of an indefinitely long cylindrical layer cavity. As boundary conditions it is imposed that the internal surface of the cavity is maintained below the fusion temperature of the infilling substance and the external surface is kept above it. The solution, obtained in non-dimensional variables, consists in two closed form heat conduction equation solutions for the solidified and liquid regions, which formally depend of the, at first, unknown position of the phase change front. The energy balance through the phase change front furnishes the equation for time dependence of the front position, which is numerically solved. Substitution of the front position for a particular instant in the heat conduction equation solutions gives the temperature distribution inside the cavity at that moment. The solution is illustrated with numerical examples.
|
Page generated in 0.0823 seconds