• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 7
  • 3
  • 1
  • Tagged with
  • 16
  • 16
  • 16
  • 9
  • 5
  • 4
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Reparación de mutaciones en el gent CFTR como estrategia de terapia génica para la fibrosis quística

Semir Frappart, David de 11 February 2005 (has links)
La fibrosis quística (fq) es la enfermedad autosómica recesiva más frecuente en la población caucasoide con una frecuencia de portadores de 1/25. Las manifestaciones clínicas más importantes son las infecciones crónicas recurrentes del pulmón conllevando al deterioro del mismo. En esta tesis nos propusimos corregir dos mutaciones en el gen cftr, responsable de la fq, en la linea celular de epitelio bronquial ib3.1 de genotipo (f508del/w1282x). Para ello, mediante citometría de flujo y microscopía confocal pusimos a punto la incorporación no viral (vectores pei, geneporter y citofectina) de oligonucleótidos modificados (quimeraplastos y oligonucleótidos fosforotioato) y de fragmentos sfhr en estas células. Los quimeraplastos son oligonucléotidos quiméricos de rna y dna y los oligonucleótidos fosforotioato contienen enlaces fosforotioato para evitar su degradación además de enlaces fosfodiéster. Ambos, son capaces de estimular los mecanismos de reparación intrínsecos de las células para corregir a nivel de dna mutaciones puntuales. Los fragmentos sfhr (small fragment homologous replacement) son fragmentos de pcr de longitud variable con la secuencia salvaje del gen que se intercambian con las secuencias genómicas diana mutadas por recombinación homóloga para revertir mutaciones puntuales (cambios de 1 nucleótido, pequeñas inserciones o deleciones). Para estimar el porcentaje de corrección génica adaptamos la técnica diagnóstica de pcr-ola a nuestro modelo para utilizarla como metodología de cuantificación. Además, hemos confirmado que las células ib3.1 tienen los mecanismos de reparación de mutaciones puntuales activos tanto por rt-pcr como por un ensayo in vitro en e.coli con el plásmido pksm4021 que contiene el gen de resistencia a ampicilina y el gen de resistencia a kanamicina inactivado por una mutación puntual. Los resultados que se publicaron en los siguientes artículos nos han permitido extraer las siguientes conclusiones: las células Ib3.1 de epitelio bronquial de fq son competentes en cuanto al sistema de reparación mmr. La incorporación celular de quimeraplastos, oligonucleótidos monocadena y fragmentos sfhr es muy eficiente en las células ib3.1. El lípido catiónico citofectina, el policatión pei y la electroporación, aunque no el lípido catiónico geneporter, son sistemas de transfección eficientes para incorporar oligonucleótidos modificados en el núcleo de las células ib3.1. Los poliplejos de pei y los lipoplejos de citofectina son internalizados por distintos mecanismos aunque en ambos casos los oligonucleótidos modificados son degradados significativamente en las células ib3.1. El análisis genescan de electroferogramas fluorescentes constituye un sistema fiable, fácil, sensible y seguro para evaluar y cuantificar la degradación intracelular y extracelular de oligonucleótidos marcados con fluorescencia en fluidos biológicos. La tecnología de pcr-ola constituye un sistema fiable y preciso de cuantificación de reparación génica aplicable a modelos celulares heterocigotos. Los fragmentos sfhr pueden actuar como cebador artefactual en las reacciones de pcr y generar un artefacto que da lugar a falsos positivos en la detección de conversión génica. Es indispensable diseñar los cebadores de detección de la modificación génica fuera de la región de homología con los fragmentos sfhr. La corrección génica de mutaciones puntuales mediada por quimeraplastos, oligonucleótidos monocadena y fragmentos sfhr es un proceso ineficiente en las células ib3.1. Será necesario estimular los mecanismos endógenos de reparación génica para incrementar la frecuencia de reparación génica hasta niveles terapéuticos en dichas células.
12

Approaches to pharmacological treatment and gene therapy of cystic fibrosis /

Dragomir, Anca, January 2004 (has links)
Diss. (sammanfattning) Uppsala : Univ., 2004. / Härtill 5 uppsatser.
13

Expression and functional significance of the cystic fibrosis transmembrance [sic] conductance regulator (CFTR) in human mast cells

Déry, René Eugène. January 2009 (has links)
Thesis (Ph.D.)--University of Alberta, 2009. / A thesis submitted to the Faculty of Graduate Studies and Research in partial fulfillment of the requirements for the degree of Doctor of Philosophy in Experimental Medicine, Department of Medicine. Title from pdf file main screen (viewed on November 1, 2009). Includes bibliographical references.
14

Rational design of split gene vectors to expand the packaging capacity of adeno-associated viral vectors

Ghosh, Arkasubhra, January 2007 (has links)
Thesis (Ph. D.)--University of Missouri-Columbia, 2007. / The entire dissertation/thesis text is included in the research.pdf file; the official abstract appears in the short.pdf file (which also appears in the research.pdf); a non-technical general description, or public abstract, appears in the public.pdf file. Vita. "December 2007" Includes bibliographical references.
15

Molecular modeling and simulations of the conformational changes underlying channel activity in CFTR

Rahman, Kazi Shefaet 13 January 2014 (has links)
Mutations in the gene encoding the cystic fibrosis transmembrane conductance regulator protein (CFTR) cause cystic fibrosis (CF), the most common life-shortening genetic disease among Caucasians. Although general features of the structure of CFTR have been predicted from homology models, the conformational changes that result in channel opening and closing have yet to be resolved. We created new closed- and open-state homology models of CFTR, and performed targeted molecular dynamics simulations of the conformational transitions in a channel opening event. The simulations predict a conformational wave that starts at the nucleotide binding domains and ends with the formation of an open conduction pathway. Experimentally confirmed changes in side-chain interactions are observed in all major domains of the protein. We also identified unique-to-CFTR substitutions that may have led to channel activity in CFTR. Molecular modeling and simulations are used to compare the effects of these substitutions against a canonical ABC transporter, and suggest that gain of channel function in CFTR may have risen from loss of ATPase function at its NBDs. The models and simulation add to our understanding of the mechanism of ATP-dependent gating in this disease-relevant ion channel.
16

Reverting the F508del-CFTR defect in Cystic Fibrosis with CRISPR-Cas technology

Carrozzo, Irene 26 April 2023 (has links)
Cystic Fibrosis (CF) is a common life-shortening autosomal recessive disease that affects over 100.000 people worldwide people worldwide. It is caused by mutations in the CF trans-membrane conductance regulator (CFTR) gene, that encodes for a membrane channel localized at the apical surface of epithelial cells where it has a crucial role in the secretion of chloride and bicarbonate. Over 2100 different CFTR mutations have been reported and among the pathogenic once the most common is F508del, located in the nucleotide-binding domain 1 (NBD1). F508del is a three-nucleotide deletion that results in the loss of a phenylalanine at position 508 in the protein and in the consequent CFTR degradation by the ubiquitin-proteasome system. Different attempts to correct F508del-CFTR gene were made using genome editing approaches, however deletions like F508del remain difficult to be repaired. Several studies reported that additional mutations (revertant mutations) in the F508del-CFTR gene can rescue both CFTR folding and activity, suggesting a potential novel strategy to correct F508del. For this reason, the first aim of this work was the identification of novel F508del-CFTR revertants that can rescue CFTR localization and function. We generated a library of mutants introducing random substitutions into the F508del-CFTR gene. Revertant mutations were isolated based on their ability to rescue the presence of CFTR at the plasma membrane (PM) in HEK293T cells and identified by Sanger sequencing. Restoration of CFTR maturation, localization, and function of the identified revertants was evaluated by western blot, flow cytometry analysis and YFP assay, reaching levels similar to the wild type CFTR. Then we used CRISPR-Cas technology to introduce selected revertant mutations, such as I539T, R553Q, G550E, R555K and R1070W, in the endogenous F508del-CFTR gene. Adenine and cytosine base editors (ABE and CBE) allow the insertion of the desired base conversion without the formation of double strand breaks. Efficient editing was evaluated through Sanger sequencing, reaching up to 60% of base conversion. CFTR rescue at the PM in edited cells was analyzed by flow cytometry showing different degrees of recovery compared to the wild type CFTR. In this work, we confirmed that revertant mutations can rescue F508del CFTR localization and function. In addition, we demonstrated that CRISPR-base editors are valid tools to introduce these mutations in the endogenous F508del-CFTR gene, leading to a permanent correction. The proposed strategy could overcome the limits that genome editing strategies faced till now in the correction of F508del, providing a new potential therapeutic approach to treat CF.

Page generated in 0.1 seconds