• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • No language data
  • Tagged with
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Structure-Function of the Cytochrome b6f Complex in Oxygenic Photosynthesis: Molecular Control of Electron Transport and Thermodynamic Analysis of the Interaction of a Proposed Protein Ligand

Jillian Ness (8662464) 31 July 2020 (has links)
In the first study presented here, the 2.5 Å crystal structure1 of the cytochrome <i>b<sub>6</sub>f</i> complex obtained from the cyanobacterium Nostoc sp. PCC 7120 (pdb 4OGQ) was used as a guide for modification by site-directed mutagenesis in the cyanobacterium Synechococcus sp. PCC 7002 of the rate-limiting step in the central electron transport/proton translocation chain of oxygenic photosynthesis. This step is associated with the oxidation and deprotonation of plastoquinol on the electrochemically positive (p) side of the membrane. The mutagenesis strategy is based on structure studies of the <i>b<sub>6</sub>f</i> complex in the absence and presence of quinol analogue inhibitors which bind and inhibit electron transport on the p-side of the thylakoid membrane. The strategy focused on two conserved prolines located on the p-side of the F-helix, proximal to the C-helix, in subunit IV of the seven subunit cytochrome <i>b<sub>6</sub>f</i> complex. These prolines, residues 105 and 112 in the F-helix, are seen in the crystal structure to cause a bend in this helix away from the C-helix in the cytochrome b subunit. Thus, they are predicted to increase the portal aperture for the plastoquinol generated in the photosystem II reaction center complex that serves as the electron-proton donor to the [2Fe-2S] iron-sulfur protein and the pside b-heme. Changing the two prolines to alanine resulted in a decrease of 30-50 % in the logphase growth rate of the cell culture and reduction of photo-oxidized cytochrome f. The second study examines the binding thermodynamics of the cytochrome b6f complex and a purposed binding partner, PGRL1, using isothermal titration calorimetry. Proton Gradient Regulation-Like 1 (PGRL1) is thought to be necessary for efficient cyclic electron transfer, however, it’s mechanistic role is unknown. Here we examined for PGRL1 and cytochrome b6f complex binding and found there was no detectable interaction, indicating that PGRL1 is not a direct quinone/cyt b6f electron cofactor.<br>
2

STRUCTURE-FUNCTION OF MEMBRANE PROTEIN COMPLEXES INVOLVED IN OXYGENIC PHOTOSYNTHESIS

Satarupa Bhaduri (6901283) 13 August 2019 (has links)
<p>Three aspects of the electron transport chain have been investigated in the present studies: (<b>i</b>) structure-function studies of the central proton-electron conducting cytochrome <i>b</i><sub>6</sub><i>f</i>complex, focusing on the effect of lipids in structural stabilization and electron transfer function; (<b>ii</b>) transmembrane electron transfer pathways in the cytochrome <i>b</i><sub>6</sub><i>f</i>and mitochondrial cytochrome <i>bc</i><sub>1</sub>complexes, determined by heterogeneity in the internal polarity of the membrane protein complexes; and (<b>iii</b>) purification and characterization of a novel ~1 MDa supercomplex, dominated by the presence of photosystem I (PSI), ATP-synthase and ferredoxin-NADP<sup>+</sup>reductase (FNR) from higher plant system <i>Spinacea</i>.<b></b></p>

Page generated in 0.0446 seconds