Spelling suggestions: "subject:"décomposition parafac"" "subject:"décomposition parafac2""
1 |
Méthodes statistiques d'ordre élevé pour l'identification aveugle de canaux et la détection de sources avec des applications aux systèmes de communicaton sans filRolim Fernandes, Carlos Estêvao 30 May 2008 (has links) (PDF)
Les systèmes de télécommunications modernes exigent des débits de transmission très élevés. Dans ce cadre, le problème d'identification de canaux est un enjeu majeur. L'utilisation de techniques aveugles est d'un grand intérêt pour avoir le meilleur compromis entre un taux binaire adéquat et la qualité de l'information récupérée. En utilisant les propriétés des cumulants d'ordre 4 des signaux de sortie du canal, cette thèse introduit de nouvelles méthodes de traitement du signal tensoriel avec des applications pour les systèmes de communication radio-mobiles. En utilisant la structure symétrique des cumulants de sortie, nous traitons le problème de l'identification aveugle de canaux en ntroduisant un modèle multilinéaire pour le tenseur des cumulants d'ordre 4, basé sur une décomposition de type Parafac. Dans le cas SISO, les composantes du modèle tensoriel ont une structure de Hankel. Dans le cas de canaux MIMO instantanés, la redondance des facteurs tensoriels est exploitée pour l'estimation des coefficients du canal. Dans ce contexte, nous développons des algorithmes d'identification aveugle basés sur une minimisation de type moindres carrés à pas unique (SS-LS). Les méthodes proposées exploitent la structure multilinéaire du tenseur de cumulants aussi bien que les relations de symétrie et de redondance, ce qui permet d'éviter toute sorte de traitement au préalable. En effet, l'approche SS-LS induit une solution basée sur une seule et unique procédure d'optimisation, sans les étapes intermédiaires requises par la majorité des méthodes existant dans la littérature. En exploitant seulement les cumulants d'ordre 4 et le concept de réseau virtuel, nous abordons aussi le problème de la localisation de sources dans le cadre d'un réseau d'antennes multiutilisateur. Une contribution originale consiste à augmenter le nombre de capteurs virtuels en exploitant un arrangement particulier du tenseur de cumulants, de manière à améliorer la résolution du réseau, dont la structure équivaut à celle qui est typiquement issue de l'utilisation des statistiques d'ordre 6. Nous traitons par ailleurs le problème de l'estimation des paramètres physiques d'un canal de communication de type MIMO à trajets multiples. Dans un premier temps, nous considérons le canal à trajets multiples comme un modèle MIMO convolutif et proposons une nouvelle technique d'estimation des coefficients. Cette technique non-paramétrique généralise les méthodes proposées dans les chapitres précédents pour les cas SISO et MIMO instantané. En représentant le canal multi-trajet à l'aide d'un formalisme tensoriel, les paramètres physiques sont obtenus en utilisant une technique combinée de type ALS-MUSIC, basée sur un algorithme de sous-espaces. Enfin, nous considérons le problème de la détermination d'ordre de canaux de type RIF, dans le contexte des systèmes MISO. Nous introduisons une procédure complète qui combine la détection des signaux avec l'estimation des canaux de communication MISO sélectifs en fréquence. Ce nouvel algorithme, basé sur une technique de déflation, est capable de détecter successivement les sources, de déterminer l'ordre de chaque canal de transmission et d'estimer les coefficients associés.
|
2 |
Systèmes de communication MIMO non-linéaires : estimation de canal et récupération d'information en utilisant des modèles de VolterraRolim Fernandes, Carlos Alexandre 03 July 2009 (has links) (PDF)
Du à la présence de dispositifs non-linéaires comme des amplificateurs de puissance (PAs) et des instruments optiques, les signaux de communication sont parfois corrompus par des distorsions non-linéaires. Dans ce cas, des modèles non-linéaires sont utilisés pour fournir une description précise des signaux, permettant le développement de techniques de traitement du signal capables d'éliminer ou de réduire ces distorsions. Dans ce contexte, le choix du modèle non-linéaire à une importance majeure. Les modèles de Volterra sont depuis longtemps utilisés pour représenter les systèmes de communication en présence de distorsions non-linéaires, ayant des applications dans les systèmes de communication par satellite, les systèmes OFDM et les systèmes radio over fiber (ROF), entre autres. Le principal objectif de cette thèse est de proposer des techniques d'estimation et de récupération d'information dans les systèmes de communication MIMO Volterra. Ce type de modèle MIMO peut être utilisé pour modéliser des canaux de communication avec de multiples antennes à la transmission et à la réception, ainsi que des canaux multi-utilisateurs avec de multiples antennes à réception et une antenne de transmission par utilisateur. Les techniques d'estimation et d'égalisation de canaux sont développées pour trois systèmes de communication non-linéaires différents: OFDM, ROF et ROF-CDMA, différents modèles MIMO Volterra étant utilisés selon l'application considérée. Dans le cas des systèmes du type OFDM, un nouveau schéma de transmission qui introduit de la redondance dans les signaux transmis, ainsi que des récepteurs exploitant cette redondance sont proposés. Dans le cas des systèmes TDMA-SDMA, un ensemble de polynômes orthonormaux est développé pour améliorer la vitesse de convergence de l'algorithme LMS pour l'estimation adaptative supervisée d'un système MIMO Volterra. D'autre part, le développement de récepteurs pour des systèmes de communication MIMO Volterra dans un schéma de transmission aveugle est réalisé à l'aide de décompositions tensorielles. Dans ce cas, en exploitant le fait que les modèles de Volterra sont linéaires vis-à-vis de leurs coefficients, des techniques d'estimation et d'égalisation de canaux MIMO Volterra basées sur la décomposition PARAFAC sont développées pour des systèmes de communication TDMA-SDMA et CDMA.
|
3 |
Modèles de volterra à complexité réduite : estimation paramétrique et application à l'égalisation des canaux de communicationKibangou, Alain Y. 28 January 2005 (has links) (PDF)
Une large classe de systèmes physiques peut être représentée à l'aide du modèle de Volterra. Il a notamment été montré que tout système non-linéaire, invariant dans le temps et à mémoire évanouissante peut être représenté par un modèle de Volterra de mémoire et d¤ordre finis. Ce modèle est donc particulièrement attrayant pour les besoins de modélisation et d'identification de systèmes non-linéaires. Un des atouts majeurs du modèle de Volterra est la linéarité par rapport à ses paramètres, c¤est à dire les coefficients de ses noyaux. Cette caractéristique permet d'étendre à ce modèle certains résultats établis pour l'identification des modèles linéaires. Il est à noter que le modèle de Volterra peut, par ailleurs, être vu comme une extension naturelle de la notion de réponse impulsionnelle des systèmes linéaires aux systèmes non-linéaires. Toutefois, certaines limitations sont à circonvenir: un nombre de paramètres qui peut être très élevé et un mauvais conditionnement de la matrice des moments de l'entrée intervenant dans l¤estimation du modèle au sens de l¤erreur quadratique moyenne minimale (EQMM). Il est à noter que ce mauvais conditionnement est aussi à l¤origine de la lenteur de convergence des algorithmes adaptatifs de type LMS (Least Mean Squares). Cette thèse traite principalement de ces deux questions. Les solutions apportées sont essentiellement basées sur la notion d'orthogonalité. D'une part, l'orthogonalité est envisagée vis à vis de la structure du modèle en développant les noyaux de Volterra sur une base orthogonale de fonctions rationnelles. Ce développement est d'autant plus parcimonieux que la base est bien choisie. Pour ce faire, nous avons développé de nouveaux outils d'optimisation des bases de Laguerre et BFOR (Base de Fonctions Orthonormales Rationnelles) pour la représentation des noyaux de Volterra. D'autre part, l'orthogonalité est envisagée en rapport avec les signaux d'entrée. En exploitant les propriétés statistiques de l¤entrée, des bases de polynômes orthogonaux multivariables ont été construites. Les paramètres du modèle de Volterra développé sur de telles bases sont alors estimés sans aucune inversion matricielle, ce qui simplifie significativement l¤estimation paramétrique au sens EQMM. L¤orthogonalisation des signaux d¤entrée a aussi été envisagée via une procédure de Gram-Schmidt. Dans un contexte adaptatif, il en résulte une accélération de la convergence des algorithmes de type LMS sans un surcoût de calcul excessif. Certains systèmes physiques peuvent être représentés à l¤aide d¤un modèle de Volterra simplifié, à faible complexité paramétrique, tel que le modèle de Hammerstein et celui de Wiener. C¤est le cas d¤un canal de communication représentant l'accès à un réseau sans fil via une fibre optique. Nous montrons notamment que les liaisons montante et descendante de ce canal peuvent respectivement être représentées par un modèle de Wiener et par un modèle de Hammerstein. Dans le cas mono-capteur, en utilisant un précodage de la séquence d'entrée, nous développons une solution permettant de réaliser l'estimation conjointe du canal de transmission et des symboles transmis de manière semiaveugle. Il est à noter que, dans le cas de la liaison montante, une configuration multi-capteurs peut aussi être envisagée. Pour une telle configuration, grâce à un précodage spécifique de la séquence d¤entrée, nous exploitons la diversité spatiale introduite par les capteurs et la diversité temporelle de sorte à obtenir une représentation tensorielle du signal reçu. En appliquant la technique de décomposition tensorielle dite PARAFAC, nous réalisons l'estimation conjointe du canal et des symboles émis de manière aveugle. Mots clés: Modélisation, Identification, Bases orthogonales, Base de Laguerre, Base de fonctions orthonormales rationnelles, Polynômes orthogonaux, Optimisation de pôles, Réduction de complexité, Egalisation, Modèle de Volterra, Modèle de Wiener, Modèle de Hammerstein, Décomposition PARAFAC.
|
Page generated in 0.1245 seconds